{"title":"A faster algorithm for the Birthday Song Singers Synchronization Problem (FSSP) in one-dimensional CA with multiple speeds","authors":"Thomas Worsch","doi":"10.1007/s00236-020-00383-6","DOIUrl":null,"url":null,"abstract":"<div><p>In cellular automata with multiple speeds for each cell <i>i</i> there is a positive integer <span>\\(p_i\\)</span> such that this cell updates its state still periodically but only at times which are a multiple of <span>\\(p_i\\)</span>. Additionally there is a finite upper bound on all <span>\\(p_i\\)</span>. Manzoni and Umeo have described an algorithm for these (one-dimensional) cellular automata which solves the Firing Squad Synchronization Problem. This algorithm needs linear time (in the number of cells to be synchronized) but for many problem instances it is slower than the optimum time by some positive constant factor. In the present paper we derive lower bounds on possible synchronization times and describe an algorithm which is never slower and in some cases faster than the one by Manzoni and Umeo and which is close to a lower bound (up to a constant summand) in more cases.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"58 4","pages":"451 - 462"},"PeriodicalIF":0.4000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00236-020-00383-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-020-00383-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In cellular automata with multiple speeds for each cell i there is a positive integer \(p_i\) such that this cell updates its state still periodically but only at times which are a multiple of \(p_i\). Additionally there is a finite upper bound on all \(p_i\). Manzoni and Umeo have described an algorithm for these (one-dimensional) cellular automata which solves the Firing Squad Synchronization Problem. This algorithm needs linear time (in the number of cells to be synchronized) but for many problem instances it is slower than the optimum time by some positive constant factor. In the present paper we derive lower bounds on possible synchronization times and describe an algorithm which is never slower and in some cases faster than the one by Manzoni and Umeo and which is close to a lower bound (up to a constant summand) in more cases.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.