Curvature of the second kind and a conjecture of Nishikawa

IF 1.1 3区 数学 Q1 MATHEMATICS
M. Gursky, Xiaodong Cao, Hung Tran
{"title":"Curvature of the second kind and a conjecture of Nishikawa","authors":"M. Gursky, Xiaodong Cao, Hung Tran","doi":"10.4171/cmh/545","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate manifolds for which the curvature of the second kind (following the terminology of Nishikawa) satisfies certain positivity conditions. Our main result settles Nishikawa's conjecture that manifolds for which the curvature (operator) of the second kind are positive are diffeomorphic to a sphere, by showing that such manifolds satisfy Brendle's PIC1 condition. In dimension four we show that curvature of the second kind has a canonical normal form, and use this to classify Einstein four-manifolds for which the curvature (operator) of the second kind is five-non-negative. We also calculate the normal form for some explicit examples in order to show that this assumption is sharp.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/545","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we investigate manifolds for which the curvature of the second kind (following the terminology of Nishikawa) satisfies certain positivity conditions. Our main result settles Nishikawa's conjecture that manifolds for which the curvature (operator) of the second kind are positive are diffeomorphic to a sphere, by showing that such manifolds satisfy Brendle's PIC1 condition. In dimension four we show that curvature of the second kind has a canonical normal form, and use this to classify Einstein four-manifolds for which the curvature (operator) of the second kind is five-non-negative. We also calculate the normal form for some explicit examples in order to show that this assumption is sharp.
第二类曲率与Nishikawa的一个猜想
在本文中,我们研究了第二类曲率(遵循Nishikawa的术语)满足某些正条件的流形。我们的主要结果通过证明第二类曲率(算子)为正的流形满足Brendle的PIC1条件,解决了Nishikawa的猜想,即这些流形对球面是微分同胚的。在第四维中,我们证明了第二类曲率具有规范范式,并用它将第二类的曲率(算子)为五个非负的Einstein四个流形分类。我们还计算了一些显式例子的正规形式,以表明这种假设是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信