Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets

S. Budi, Muhamad Akrom, Gustina Alfa Trisnapradika, T. Sutojo, Wahyu A. E. Prabowo
{"title":"Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets","authors":"S. Budi, Muhamad Akrom, Gustina Alfa Trisnapradika, T. Sutojo, Wahyu A. E. Prabowo","doi":"10.15294/sji.v10i2.43929","DOIUrl":null,"url":null,"abstract":"Purpose: Experimental studies are usually costly, time-consuming, and resource-intensive when it comes to investigating prospective corrosion inhibitor compounds. Machine learning (ML) based on the quantitative structure-property relationship model (QSPR) has become a massive method for testing the effectiveness of chemical compounds as corrosion inhibitors. The main challenge in the ML method is to design a model that produces high prediction accuracy so that the properties of a material can be predicted accurately. In this study, we examine the performance of polynomial functions in the ML-based NuSVR algorithm in evaluating the regression dataset of corrosion inhibition efficiency of pyridine-quinoline compounds.Methods: Polynomial functions for NuSVR algorithm-based ML.Result: The outcomes demonstrate that the NuSVR model's prediction ability is greatly enhanced by the application of polynomial functions. Originality: The combination of polynomial functions and deep machine learning based NuSVR algorithms to increase the accuracy of predictive models.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v10i2.43929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose: Experimental studies are usually costly, time-consuming, and resource-intensive when it comes to investigating prospective corrosion inhibitor compounds. Machine learning (ML) based on the quantitative structure-property relationship model (QSPR) has become a massive method for testing the effectiveness of chemical compounds as corrosion inhibitors. The main challenge in the ML method is to design a model that produces high prediction accuracy so that the properties of a material can be predicted accurately. In this study, we examine the performance of polynomial functions in the ML-based NuSVR algorithm in evaluating the regression dataset of corrosion inhibition efficiency of pyridine-quinoline compounds.Methods: Polynomial functions for NuSVR algorithm-based ML.Result: The outcomes demonstrate that the NuSVR model's prediction ability is greatly enhanced by the application of polynomial functions. Originality: The combination of polynomial functions and deep machine learning based NuSVR algorithms to increase the accuracy of predictive models.
基于机器学习的NuSVR算法中多项式函数的优化——以回归数据集为例
目的:在研究潜在的缓蚀剂化合物时,实验研究通常成本高昂、耗时且资源密集。基于定量结构-性能关系模型(QSPR)的机器学习(ML)已成为测试化合物作为缓蚀剂有效性的一种大规模方法。ML方法的主要挑战是设计一个具有高预测精度的模型,以便能够准确预测材料的特性。在本研究中,我们检验了基于ML的NuSVR算法中多项式函数在评估吡啶喹啉化合物缓蚀效率回归数据集方面的性能。方法:将多项式函数用于基于NuSVR算法的ML。结果:结果表明,多项式函数的应用大大提高了NuSVR模型的预测能力。独创性:将多项式函数和基于深度机器学习的NuSVR算法相结合,以提高预测模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信