S. Budi, Muhamad Akrom, Gustina Alfa Trisnapradika, T. Sutojo, Wahyu A. E. Prabowo
{"title":"Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets","authors":"S. Budi, Muhamad Akrom, Gustina Alfa Trisnapradika, T. Sutojo, Wahyu A. E. Prabowo","doi":"10.15294/sji.v10i2.43929","DOIUrl":null,"url":null,"abstract":"Purpose: Experimental studies are usually costly, time-consuming, and resource-intensive when it comes to investigating prospective corrosion inhibitor compounds. Machine learning (ML) based on the quantitative structure-property relationship model (QSPR) has become a massive method for testing the effectiveness of chemical compounds as corrosion inhibitors. The main challenge in the ML method is to design a model that produces high prediction accuracy so that the properties of a material can be predicted accurately. In this study, we examine the performance of polynomial functions in the ML-based NuSVR algorithm in evaluating the regression dataset of corrosion inhibition efficiency of pyridine-quinoline compounds.Methods: Polynomial functions for NuSVR algorithm-based ML.Result: The outcomes demonstrate that the NuSVR model's prediction ability is greatly enhanced by the application of polynomial functions. Originality: The combination of polynomial functions and deep machine learning based NuSVR algorithms to increase the accuracy of predictive models.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v10i2.43929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose: Experimental studies are usually costly, time-consuming, and resource-intensive when it comes to investigating prospective corrosion inhibitor compounds. Machine learning (ML) based on the quantitative structure-property relationship model (QSPR) has become a massive method for testing the effectiveness of chemical compounds as corrosion inhibitors. The main challenge in the ML method is to design a model that produces high prediction accuracy so that the properties of a material can be predicted accurately. In this study, we examine the performance of polynomial functions in the ML-based NuSVR algorithm in evaluating the regression dataset of corrosion inhibition efficiency of pyridine-quinoline compounds.Methods: Polynomial functions for NuSVR algorithm-based ML.Result: The outcomes demonstrate that the NuSVR model's prediction ability is greatly enhanced by the application of polynomial functions. Originality: The combination of polynomial functions and deep machine learning based NuSVR algorithms to increase the accuracy of predictive models.