Di Wu, Hanlin Zhu, Yongxin Zhu, Victor I. Chang, Cong He, Ching‐Hsien Hsu, Hui Wang, Songlin Feng, Li Tian, Zunkai Huang
{"title":"Anomaly Detection Based on RBM-LSTM Neural Network for CPS in Advanced Driver Assistance System","authors":"Di Wu, Hanlin Zhu, Yongxin Zhu, Victor I. Chang, Cong He, Ching‐Hsien Hsu, Hui Wang, Songlin Feng, Li Tian, Zunkai Huang","doi":"10.1145/3377408","DOIUrl":null,"url":null,"abstract":"Advanced Driver Assistance System (ADAS) is a typical Cyber Physical System (CPS) application for human–computer interaction. In the process of vehicle driving, we use the information from CPS on ADAS to not only help us understand the driving condition of the car but also help us change the driving strategies to drive in a better and safer way. After getting the information, the driver can evaluate the feedback information of the vehicle, so as to enhance the ability to assist in driving of the ADAS system. This completes a complete human–computer interaction process. However, the data obtained during the interaction usually form a large dimension, and irrelevant features sometimes hide the occurrence of anomalies, which poses a significant challenge to us to better understand the driving states of the car. To solve this problem, we propose an anomaly detection framework based on RBM-LSTM. In this hybrid framework, RBM is trained to extract general underlying features from data collected by CPS, and LSTM is trained from the features learned by RBM. This framework can effectively improve the prediction speed and present a good prediction accuracy to show vehicle driving condition. Besides, drivers are allowed to evaluate the prediction results, so as to improve the accuracy of prediction. Through the experimental results, we can find that the proposed framework not only simplifies the training of the entire neural network and increases the training speed but also greatly improves the accuracy of the interaction-driven data analysis. It is a valid method to analyze the data generated during the human interaction.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"4 1","pages":"1 - 17"},"PeriodicalIF":2.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3377408","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 15
Abstract
Advanced Driver Assistance System (ADAS) is a typical Cyber Physical System (CPS) application for human–computer interaction. In the process of vehicle driving, we use the information from CPS on ADAS to not only help us understand the driving condition of the car but also help us change the driving strategies to drive in a better and safer way. After getting the information, the driver can evaluate the feedback information of the vehicle, so as to enhance the ability to assist in driving of the ADAS system. This completes a complete human–computer interaction process. However, the data obtained during the interaction usually form a large dimension, and irrelevant features sometimes hide the occurrence of anomalies, which poses a significant challenge to us to better understand the driving states of the car. To solve this problem, we propose an anomaly detection framework based on RBM-LSTM. In this hybrid framework, RBM is trained to extract general underlying features from data collected by CPS, and LSTM is trained from the features learned by RBM. This framework can effectively improve the prediction speed and present a good prediction accuracy to show vehicle driving condition. Besides, drivers are allowed to evaluate the prediction results, so as to improve the accuracy of prediction. Through the experimental results, we can find that the proposed framework not only simplifies the training of the entire neural network and increases the training speed but also greatly improves the accuracy of the interaction-driven data analysis. It is a valid method to analyze the data generated during the human interaction.