Groups with many roots

IF 0.7 Q2 MATHEMATICS
S. Hart, Daniel McVeagh
{"title":"Groups with many roots","authors":"S. Hart, Daniel McVeagh","doi":"10.22108/IJGT.2020.119870.1582","DOIUrl":null,"url":null,"abstract":"Given a prime $p$‎, ‎a finite group $G$ and a non-identity element $g$‎, ‎what is the largest number of $pth$ roots $g$ can have? We write $myro_p(G)$‎, ‎or just $myro_p$‎, ‎for the maximum value of $frac{1}{|G|}|{x in G‎: ‎x^p=g}|$‎, ‎where $g$ ranges over the non-identity elements of $G$‎. ‎This paper studies groups for which $myro_p$ is large‎. ‎If there is an element $g$ of $G$ with more $pth$ roots than the identity‎, ‎then we show $myro_p(G) leq myro_p(P)$‎, ‎where $P$ is any Sylow $p$-subgroup of $G$‎, ‎meaning that we can often reduce to the case where $G$ is a $p$-group‎. ‎We show that if $G$ is a regular $p$-group‎, ‎then $myro_p(G) leq frac{1}{p}$‎, ‎while if $G$ is a $p$-group of maximal class‎, ‎then $myro_p(G) leq frac{1}{p}‎ + ‎frac{1}{p^2}$ (both these bounds are sharp)‎. ‎We classify the groups with high values of $myro_2$‎, ‎and give partial results on groups with high values of $myro_3$‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2020.119870.1582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a prime $p$‎, ‎a finite group $G$ and a non-identity element $g$‎, ‎what is the largest number of $pth$ roots $g$ can have? We write $myro_p(G)$‎, ‎or just $myro_p$‎, ‎for the maximum value of $frac{1}{|G|}|{x in G‎: ‎x^p=g}|$‎, ‎where $g$ ranges over the non-identity elements of $G$‎. ‎This paper studies groups for which $myro_p$ is large‎. ‎If there is an element $g$ of $G$ with more $pth$ roots than the identity‎, ‎then we show $myro_p(G) leq myro_p(P)$‎, ‎where $P$ is any Sylow $p$-subgroup of $G$‎, ‎meaning that we can often reduce to the case where $G$ is a $p$-group‎. ‎We show that if $G$ is a regular $p$-group‎, ‎then $myro_p(G) leq frac{1}{p}$‎, ‎while if $G$ is a $p$-group of maximal class‎, ‎then $myro_p(G) leq frac{1}{p}‎ + ‎frac{1}{p^2}$ (both these bounds are sharp)‎. ‎We classify the groups with high values of $myro_2$‎, ‎and give partial results on groups with high values of $myro_3$‎.
具有许多根的组
给定一个素数$p$ $,一个有限群$G$和一个非单位元$G$ $ $, $G$ $p$根的最大个数是多少?我们写$myro_p(G)$ $,或者只是$myro_p$ $,表示$frac{1}{|G|}|{x在G$: $ x^p= G}|$ $中的最大值,其中$G$的取值范围在$G$ $的非单位元上。本文研究了$myro_p$较大的组。如果$g$中有一个$g$的$P$根多于$P$根,那么我们证明$myro_p(g) leq myro_p(P)$ $,其中$P$是$g$ $的任意Sylow $P$ -子群,这意味着我们通常可以简化到$g$是$P$ -群的情况。我们证明了如果$G$是一个正则$p$-群,那么$myro_p(G) leq frac{1}{p}$,而如果$G$是一个最大类的$p$-群,那么$myro_p(G) leq frac{1}{p}} + $ frac{1}{p^2}$(这两个界限都是尖锐的)。我们对$myro_2$ $的高值组进行了分类,并给出了$myro_3$ $的高值组的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信