REGRESSION-IN-RATIO ESTIMATORS IN THE PRESENCE OF OUTLIERS BASED ON REDESCENDINGM-ESTIMATOR

IF 0.9 Q3 STATISTICS & PROBABILITY
Aamir Raza, Muhmmad Noor-ul-Amin, M. Hanif
{"title":"REGRESSION-IN-RATIO ESTIMATORS IN THE PRESENCE OF OUTLIERS BASED ON REDESCENDINGM-ESTIMATOR","authors":"Aamir Raza, Muhmmad Noor-ul-Amin, M. Hanif","doi":"10.13052/jrss2229-5666.1221","DOIUrl":null,"url":null,"abstract":"In this paper, a robust redescending M-estimator is used to construct the regression-inratio estimators to estimate population when data contain outliers. The expression of mean square error of proposed estimators is derived using Taylor series approximation up to order one. Extensive simulation study is conducted for the comparison between the proposed and existing class of ratio estimators. It is revealed form the results that proposed regression-in-ratio estimators have high relative efficiency (R.E) as compared to previously developed estimators. Practical examples are also cited to validate the performance of proposed estimators. \n ","PeriodicalId":42526,"journal":{"name":"Journal of Reliability and Statistical Studies","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reliability and Statistical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss2229-5666.1221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a robust redescending M-estimator is used to construct the regression-inratio estimators to estimate population when data contain outliers. The expression of mean square error of proposed estimators is derived using Taylor series approximation up to order one. Extensive simulation study is conducted for the comparison between the proposed and existing class of ratio estimators. It is revealed form the results that proposed regression-in-ratio estimators have high relative efficiency (R.E) as compared to previously developed estimators. Practical examples are also cited to validate the performance of proposed estimators.  
基于重下降估计量的异常值存在下的比值回归估计量
在本文中,当数据包含异常值时,使用一个鲁棒的重新搜索M-估计量来构造回归比例估计量来估计总体。利用一阶Taylor级数近似导出了估计量的均方误差表达式。对所提出的比率估计类与现有比率估计类之间的比较进行了广泛的模拟研究。结果表明,与先前开发的估计量相比,所提出的比率回归估计量具有较高的相对效率(R.E)。并通过实例验证了所提估计量的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
12.50%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信