Weighted anisotropic Sobolev inequality with extremal and associated singular problems

IF 1.8 4区 数学 Q1 MATHEMATICS
K. Bal, Prashanta Garain
{"title":"Weighted anisotropic Sobolev inequality with extremal and associated singular problems","authors":"K. Bal, Prashanta Garain","doi":"10.57262/die036-0102-59","DOIUrl":null,"url":null,"abstract":"For a given Finsler-Minkowski norm $\\mathcal{F}$ in $\\mathbb{R}^N$ and a bounded smooth domain $\\Omega\\subset\\mathbb{R}^N$ $\\big(N\\geq 2\\big)$, we establish the following weighted anisotropic Sobolev inequality $$ S\\left(\\int_{\\Omega}|u|^q f\\,dx\\right)^\\frac{1}{q}\\leq\\left(\\int_{\\Omega}\\mathcal{F}(\\nabla u)^p w\\,dx\\right)^\\frac{1}{p},\\quad\\forall\\,u\\in W_0^{1,p}(\\Omega,w)\\leqno{\\mathcal{(P)}} $$ where $W_0^{1,p}(\\Omega,w)$ is the weighted Sobolev space under a class of $p$-admissible weights $w$, where $f$ is some nonnegative integrable function in $\\Omega$. We discuss the case $0<q<1$ and observe that $$ \\mu(\\Omega):=\\inf_{u\\in W_{0}^{1,p}(\\Omega,w)}\\Bigg\\{\\int_{\\Omega}\\mathcal{F}(\\nabla u)^p w\\,dx:\\int_{\\Omega}|u|^{q}f\\,dx=1\\Bigg\\}\\leqno{\\mathcal{(Q)}} $$ is associated with singular weighted anisotropic $p$-Laplace equations. To this end, we also study existence and regularity properties of solutions for weighted anisotropic $p$-Laplace equations under the mixed and exponential singularities.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-0102-59","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

For a given Finsler-Minkowski norm $\mathcal{F}$ in $\mathbb{R}^N$ and a bounded smooth domain $\Omega\subset\mathbb{R}^N$ $\big(N\geq 2\big)$, we establish the following weighted anisotropic Sobolev inequality $$ S\left(\int_{\Omega}|u|^q f\,dx\right)^\frac{1}{q}\leq\left(\int_{\Omega}\mathcal{F}(\nabla u)^p w\,dx\right)^\frac{1}{p},\quad\forall\,u\in W_0^{1,p}(\Omega,w)\leqno{\mathcal{(P)}} $$ where $W_0^{1,p}(\Omega,w)$ is the weighted Sobolev space under a class of $p$-admissible weights $w$, where $f$ is some nonnegative integrable function in $\Omega$. We discuss the case $0
具有极值和相关奇异问题的加权各向异性Sobolev不等式
对于$\mathbb{R}^N$中给定的Finsler-Minkowski范数$\mathcal{F}$和有界光滑域$\Omega\subet\mathbb{R}^N$\big(N\geq2\big)$,我们建立了以下加权各向异性Sobolev不等式$S\left(\int_{\Omega}|u|^qf\,dx\right)^\frac{1}{p},\fquad\fall\,u\在W_0^{1,p}(\Omega,W)\leqno{\mathcal{(p)}$$中,其中$W_0^{1,p}(\Omeca,W)$是一类$p$可容许权$W$下的加权Sobolev空间,其中$f$是$\Omega$中的一些非负可积函数。我们讨论了$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信