{"title":"Weighted anisotropic Sobolev inequality with extremal and associated singular problems","authors":"K. Bal, Prashanta Garain","doi":"10.57262/die036-0102-59","DOIUrl":null,"url":null,"abstract":"For a given Finsler-Minkowski norm $\\mathcal{F}$ in $\\mathbb{R}^N$ and a bounded smooth domain $\\Omega\\subset\\mathbb{R}^N$ $\\big(N\\geq 2\\big)$, we establish the following weighted anisotropic Sobolev inequality $$ S\\left(\\int_{\\Omega}|u|^q f\\,dx\\right)^\\frac{1}{q}\\leq\\left(\\int_{\\Omega}\\mathcal{F}(\\nabla u)^p w\\,dx\\right)^\\frac{1}{p},\\quad\\forall\\,u\\in W_0^{1,p}(\\Omega,w)\\leqno{\\mathcal{(P)}} $$ where $W_0^{1,p}(\\Omega,w)$ is the weighted Sobolev space under a class of $p$-admissible weights $w$, where $f$ is some nonnegative integrable function in $\\Omega$. We discuss the case $0<q<1$ and observe that $$ \\mu(\\Omega):=\\inf_{u\\in W_{0}^{1,p}(\\Omega,w)}\\Bigg\\{\\int_{\\Omega}\\mathcal{F}(\\nabla u)^p w\\,dx:\\int_{\\Omega}|u|^{q}f\\,dx=1\\Bigg\\}\\leqno{\\mathcal{(Q)}} $$ is associated with singular weighted anisotropic $p$-Laplace equations. To this end, we also study existence and regularity properties of solutions for weighted anisotropic $p$-Laplace equations under the mixed and exponential singularities.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-0102-59","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
For a given Finsler-Minkowski norm $\mathcal{F}$ in $\mathbb{R}^N$ and a bounded smooth domain $\Omega\subset\mathbb{R}^N$ $\big(N\geq 2\big)$, we establish the following weighted anisotropic Sobolev inequality $$ S\left(\int_{\Omega}|u|^q f\,dx\right)^\frac{1}{q}\leq\left(\int_{\Omega}\mathcal{F}(\nabla u)^p w\,dx\right)^\frac{1}{p},\quad\forall\,u\in W_0^{1,p}(\Omega,w)\leqno{\mathcal{(P)}} $$ where $W_0^{1,p}(\Omega,w)$ is the weighted Sobolev space under a class of $p$-admissible weights $w$, where $f$ is some nonnegative integrable function in $\Omega$. We discuss the case $0
期刊介绍:
Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.