Diagnostic tests under shifts with fixed filling tuple

IF 0.3 Q4 MATHEMATICS, APPLIED
Grigorii V. Antiufeev
{"title":"Diagnostic tests under shifts with fixed filling tuple","authors":"Grigorii V. Antiufeev","doi":"10.1515/dma-2021-0027","DOIUrl":null,"url":null,"abstract":"Abstract We consider a fault source under which the fault functions are obtained from the original function f(x̃n) ∈ P2n $\\begin{array}{} \\displaystyle P_2^n \\end{array}$ by a left shift of values of the Boolean variables by at most n. For the vacant positions of the variables, the values are selected from a given filling tuple γ̃ = (γ1, γ2, …, γn) ∈ E2n $\\begin{array}{} \\displaystyle E^n_2 \\end{array}$, which also moves to the left by the number of positions corresponding to a specific fault function. The problem of diagnostic of faults of this kind is considered. We show that the Shannon function Lγ~shifts,diagn(n), $\\begin{array}{} \\displaystyle L_{\\tilde{\\gamma}}^{\\rm shifts, diagn}(n), \\end{array}$ which is equal to the smallest necessary test length for diagnostic of any n-place Boolean function with respect to a described fault source, satisfies the inequality n2≤Lγ~shifts,diagn(n)≤n. $\\begin{array}{} \\displaystyle \\left\\lceil \\frac{n}{2} \\right\\rceil \\leq L_{\\tilde{\\gamma}}^{\\rm shifts, diagn}(n) \\leq n. \\end{array}$","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"31 1","pages":"309 - 313"},"PeriodicalIF":0.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2021-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider a fault source under which the fault functions are obtained from the original function f(x̃n) ∈ P2n $\begin{array}{} \displaystyle P_2^n \end{array}$ by a left shift of values of the Boolean variables by at most n. For the vacant positions of the variables, the values are selected from a given filling tuple γ̃ = (γ1, γ2, …, γn) ∈ E2n $\begin{array}{} \displaystyle E^n_2 \end{array}$, which also moves to the left by the number of positions corresponding to a specific fault function. The problem of diagnostic of faults of this kind is considered. We show that the Shannon function Lγ~shifts,diagn(n), $\begin{array}{} \displaystyle L_{\tilde{\gamma}}^{\rm shifts, diagn}(n), \end{array}$ which is equal to the smallest necessary test length for diagnostic of any n-place Boolean function with respect to a described fault source, satisfies the inequality n2≤Lγ~shifts,diagn(n)≤n. $\begin{array}{} \displaystyle \left\lceil \frac{n}{2} \right\rceil \leq L_{\tilde{\gamma}}^{\rm shifts, diagn}(n) \leq n. \end{array}$
具有固定填充元组的轮班下的诊断测试
摘要我们考虑一个故障源,在该故障源下,通过布尔变量的值最多左移n,从原始函数f(xõn)∈P2n$\bearning{array}{}\displaystyle P_2^n\end{array}$获得故障函数。对于变量的空位,这些值是从给定的填充元组γ=(γ1,γ2,…,γn)∈E2n$\begin{array}{}\displaystyle E^n2\end{array}$中选择的,它也向左移动与特定故障函数对应的位置数。考虑了这类故障的诊断问题。我们证明了Shannon函数Lγ~shift,diagn(n),$\bbegin{array}{}\displaystyle L_$\begin{array}{}\displaystyle\left\lceil\frac{n}{$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信