Homogeneous Einstein metrics and butterflies

IF 0.6 3区 数学 Q3 MATHEMATICS
Christoph Böhm, Megan M. Kerr
{"title":"Homogeneous Einstein metrics and butterflies","authors":"Christoph Böhm,&nbsp;Megan M. Kerr","doi":"10.1007/s10455-023-09905-0","DOIUrl":null,"url":null,"abstract":"<div><p>In 2012, M. M. Graev associated to a compact homogeneous space <i>G</i>/<i>H</i> a nerve <span>\\({\\text {X}}_{G/H}\\)</span>, whose non-contractibility implies the existence of a <i>G</i>-invariant Einstein metric on <i>G</i>/<i>H</i>. The nerve <span>\\({\\text {X}}_{G/H}\\)</span> is a compact, semi-algebraic set, defined purely Lie theoretically by intermediate subgroups. In this paper we present a detailed description of the work of Graev and the curvature estimates given by Böhm in 2004.\n</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09905-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In 2012, M. M. Graev associated to a compact homogeneous space G/H a nerve \({\text {X}}_{G/H}\), whose non-contractibility implies the existence of a G-invariant Einstein metric on G/H. The nerve \({\text {X}}_{G/H}\) is a compact, semi-algebraic set, defined purely Lie theoretically by intermediate subgroups. In this paper we present a detailed description of the work of Graev and the curvature estimates given by Böhm in 2004.

Abstract Image

齐次爱因斯坦度量与蝴蝶
2012年,M.M.Graev将紧齐次空间G/H关联为神经({\text{X}}_{G/H}),其非压缩性意味着G/H上存在G不变的爱因斯坦度量。神经({\text{X}}_{G/H})是一个紧的半代数集,在理论上由中间子群定义为纯李。在本文中,我们详细描述了Graev的工作和Böhm在2004年给出的曲率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信