Innovative Fermented Soy Drink with the Sea Buckthorn Syrup and the Probiotics Co-Culture of Lactobacillus Paracasei ssp. Paracasei (L. Casei® 431) and Bifidobacterium Animalis ssp. Lactis (Bb-12®)
IF 3.3 3区 农林科学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
N. Maftei, Roxana Elena Goroftei Bogdan, Monica Boev, Denisa Batîr Marin, A. Ramos-Villarroel, A. Iancu
{"title":"Innovative Fermented Soy Drink with the Sea Buckthorn Syrup and the Probiotics Co-Culture of Lactobacillus Paracasei ssp. Paracasei (L. Casei® 431) and Bifidobacterium Animalis ssp. Lactis (Bb-12®)","authors":"N. Maftei, Roxana Elena Goroftei Bogdan, Monica Boev, Denisa Batîr Marin, A. Ramos-Villarroel, A. Iancu","doi":"10.3390/fermentation9090806","DOIUrl":null,"url":null,"abstract":"The area of functional drink is one of the fastest-growing sectors in the world, be it that it is made from plant-based or non-dairy milk. Sea buckthorn syrup is a source of functional ingredients, with a large spectrum of healthy compounds. The study aimed to investigate the suitability of sea buckthorn syrup as a substrate for Lactobacillus paracasei ssp. paracasei (L. casei® 431) and Bifidobacterium animalis ssp. lactis (Bb-12®) development and fermentation in vegetal soy drink and to evaluate the fermented product (at 30 and 37 °C) in terms of bacterial viability, pH, tithable acidity during fermentation and storage period, water holding capacity, antioxidant capacity, total phenolic contents, sensory analysis and in vitro bio-accessibility. During fermentation, a bacterial concentration around of 109–1010 CFU·mL−1 was found in the soy drink with sea buckthorn syrup and L. casei® 431 and Bb-12®. Antioxidant capacity significantly improved after the fermentation of the soy drinks. On the other hand, through the digestibility of the drinks, the bacterial viability significantly decreased for L. casei® 431 and increased for Bb-12®. Further investigation is required on the concentration of sea buckthorn syrup and probiotic encapsulation methods to comprehend the components responsible for the efficient delivery of bacteria across the gastrointestinal tract.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fermentation9090806","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The area of functional drink is one of the fastest-growing sectors in the world, be it that it is made from plant-based or non-dairy milk. Sea buckthorn syrup is a source of functional ingredients, with a large spectrum of healthy compounds. The study aimed to investigate the suitability of sea buckthorn syrup as a substrate for Lactobacillus paracasei ssp. paracasei (L. casei® 431) and Bifidobacterium animalis ssp. lactis (Bb-12®) development and fermentation in vegetal soy drink and to evaluate the fermented product (at 30 and 37 °C) in terms of bacterial viability, pH, tithable acidity during fermentation and storage period, water holding capacity, antioxidant capacity, total phenolic contents, sensory analysis and in vitro bio-accessibility. During fermentation, a bacterial concentration around of 109–1010 CFU·mL−1 was found in the soy drink with sea buckthorn syrup and L. casei® 431 and Bb-12®. Antioxidant capacity significantly improved after the fermentation of the soy drinks. On the other hand, through the digestibility of the drinks, the bacterial viability significantly decreased for L. casei® 431 and increased for Bb-12®. Further investigation is required on the concentration of sea buckthorn syrup and probiotic encapsulation methods to comprehend the components responsible for the efficient delivery of bacteria across the gastrointestinal tract.
期刊介绍:
Fermentation-Basel is an international open access journal published by MDPI, focusing on fermentation-related research, including new and emerging products, processes and technologies, such as biopharmaceuticals and biotech drugs. The journal enjoys a good reputation in the academic community and provides a high-impact forum for researchers in the field of bioengineering and applied microbiology.