Full edge-friendly index sets of complete bipartite graphs

IF 0.6 Q3 MATHEMATICS
W. Shiu
{"title":"Full edge-friendly index sets of complete bipartite graphs","authors":"W. Shiu","doi":"10.22108/TOC.2017.20739","DOIUrl":null,"url":null,"abstract":"‎‎Let $G=(V,E)$ be a simple graph‎. ‎An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:VtoZ_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$‎, ‎where $Z_2={0,1}$ is the additive group of order 2‎. ‎For $iin{0,1}$‎, ‎let‎ ‎$e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$‎. ‎A labeling $f$ is called edge-friendly if‎ ‎$|e_f(1)-e_f(0)|le 1$‎. ‎$I_f(G)=v_f(1)-v_f(0)$ is called the edge-friendly index of $G$ under an edge-friendly labeling $f$‎. ‎The full edge-friendly index set of a graph $G$ is the set of all possible edge-friendly indices of $G$‎. ‎Full edge-friendly index sets of complete bipartite graphs will be determined‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"7-17"},"PeriodicalIF":0.6000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.20739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

‎‎Let $G=(V,E)$ be a simple graph‎. ‎An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:VtoZ_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$‎, ‎where $Z_2={0,1}$ is the additive group of order 2‎. ‎For $iin{0,1}$‎, ‎let‎ ‎$e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$‎. ‎A labeling $f$ is called edge-friendly if‎ ‎$|e_f(1)-e_f(0)|le 1$‎. ‎$I_f(G)=v_f(1)-v_f(0)$ is called the edge-friendly index of $G$ under an edge-friendly labeling $f$‎. ‎The full edge-friendly index set of a graph $G$ is the set of all possible edge-friendly indices of $G$‎. ‎Full edge-friendly index sets of complete bipartite graphs will be determined‎.
完备二部图的满边友好索引集
设$G=(V,E)$是一个简单图。一个边标记$f:Eto{0,1}$推导出一个顶点标记$f^+:VtoZ_2$定义为$f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$,其中$Z_2={0,1}$是2阶的加性群。为{0,1}时候美元‎‎,让‎‎‎e_f美元(i) f = | ^ {1} (i) | $和$ v_f (i) = | (f) ^ + ^ {1} (i) | $‎。如果$ $|e_f(1)-e_f(0)|le 1$ $,则标记$f$被称为边友好型。$I_f(G)=v_f(1)-v_f(0)$称为$G$在边友好标记$f$下的边友好指数。图$G$的完备边友好索引集是$G$所有可能的边友好索引的集合。完整二部图的全边友好索引集将被确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信