Numerical analysis of reinforced concrete beams subjected to impact loads

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ihsan A. S. Alshaarbaf, E. M. Mouwainea, A. Said
{"title":"Numerical analysis of reinforced concrete beams subjected to impact loads","authors":"Ihsan A. S. Alshaarbaf, E. M. Mouwainea, A. Said","doi":"10.1515/jmbm-2022-0232","DOIUrl":null,"url":null,"abstract":"Abstract Numerical models for impact load assessment are becoming increasingly reliable and accurate in recent years. The processing time duration for such analysis has been decreased to an acceptable level when combined with modern computer hardware. The aim of this study was to represent a simulation technique and to verify the validity of modern software in measuring the response of reinforced concrete beam strengthened by carbon fiber-reinforced polymer (CFRP) sheet subjected to impact loads at the ultimate load ranges. In this investigation, ABAQUS/Explicit Software’s nonlinear finite element modeling had been used. The response of the impact force–time history and the displacement–time history graphs were compared to the existing experimental results. The adopted general-purpose finite element analysis is verified to be capable of simulating and accurately forecasting the impact behavior for structural systems. In addition, a parametric analysis was carried out to gain a better knowledge of the performance of reinforced concrete beams under impact loading. Four parameters had been changed among the analyzed beams such as impact velocity, impact mass, CFRP sheet thickness, and compressive strength of concrete. Generally, it has been found that using a CFRP sheet in strengthening reinforced concrete beams can greatly improve the members’ impact behavior by improving stiffness as well as increasing load-carrying capacities. The enhanced performance characteristics of strengthening beams under impact loads correlate with the applied kinetic energy and CFRP thicknesses. Finally, for beams with high compressive strength, the deflection values were reduced because of the increase in stiffness.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Numerical models for impact load assessment are becoming increasingly reliable and accurate in recent years. The processing time duration for such analysis has been decreased to an acceptable level when combined with modern computer hardware. The aim of this study was to represent a simulation technique and to verify the validity of modern software in measuring the response of reinforced concrete beam strengthened by carbon fiber-reinforced polymer (CFRP) sheet subjected to impact loads at the ultimate load ranges. In this investigation, ABAQUS/Explicit Software’s nonlinear finite element modeling had been used. The response of the impact force–time history and the displacement–time history graphs were compared to the existing experimental results. The adopted general-purpose finite element analysis is verified to be capable of simulating and accurately forecasting the impact behavior for structural systems. In addition, a parametric analysis was carried out to gain a better knowledge of the performance of reinforced concrete beams under impact loading. Four parameters had been changed among the analyzed beams such as impact velocity, impact mass, CFRP sheet thickness, and compressive strength of concrete. Generally, it has been found that using a CFRP sheet in strengthening reinforced concrete beams can greatly improve the members’ impact behavior by improving stiffness as well as increasing load-carrying capacities. The enhanced performance characteristics of strengthening beams under impact loads correlate with the applied kinetic energy and CFRP thicknesses. Finally, for beams with high compressive strength, the deflection values were reduced because of the increase in stiffness.
钢筋混凝土梁在冲击荷载作用下的数值分析
摘要近年来,冲击载荷评估的数值模型越来越可靠和准确。当与现代计算机硬件相结合时,这种分析的处理时间持续时间已减少到可接受的水平。本研究的目的是代表一种模拟技术,并验证现代软件在测量碳纤维增强聚合物(CFRP)板加固的钢筋混凝土梁在极限载荷范围内受到冲击载荷的响应时的有效性。本研究采用ABAQUS/Explicit Software的非线性有限元建模。将冲击力-时间历程图和位移-时间历程图的响应与已有的实验结果进行了比较。所采用的通用有限元分析方法能够模拟和准确预测结构体系的冲击行为。此外,还进行了参数分析,以更好地了解钢筋混凝土梁在冲击载荷下的性能。分析梁的冲击速度、冲击质量、碳纤维布厚度、混凝土抗压强度等4个参数发生了变化。一般来说,使用碳纤维布加固钢筋混凝土梁可以通过改善刚度和提高承载能力来极大地改善构件的冲击性能。增强梁在冲击载荷下的增强性能特征与施加的动能和碳纤维布厚度有关。最后,对于抗压强度高的梁,由于刚度的增加,挠度值减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信