{"title":"Polynomial Approximations to Continuous Functions","authors":"Sofia de la Cerda","doi":"10.1080/00029890.2023.2206324","DOIUrl":null,"url":null,"abstract":"where g(x) is an increasing continuous function such that g(0) = 0 and g ( 1 n+2 ) > an. If p is a polynomial such that ||p − f ||∞ < an, then for each of the points xi = i where i ∈ {1, 2, . . . , n + 2}, we have |p(xi) − f (xi)| < an and f (xi) = (−1)ig ( 1 i ) . Since g ( 1 i ) ≥ g ( 1 n+2 ) > an, this means that f (xi) and p(xi) have the same sign. Thus, the sign of p(xi) alternates with each i, and by the Intermediate Value Theorem p, has a root in the interval (xi, xi+1). This makes a total of n + 1 roots, so the degree of p is greater than n, which means that en(f ) > an. There is an equivalent construction in [1]. There, the author uses a function defined as an infinite sum of Chebyshev polynomials.","PeriodicalId":7761,"journal":{"name":"American Mathematical Monthly","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mathematical Monthly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00029890.2023.2206324","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
where g(x) is an increasing continuous function such that g(0) = 0 and g ( 1 n+2 ) > an. If p is a polynomial such that ||p − f ||∞ < an, then for each of the points xi = i where i ∈ {1, 2, . . . , n + 2}, we have |p(xi) − f (xi)| < an and f (xi) = (−1)ig ( 1 i ) . Since g ( 1 i ) ≥ g ( 1 n+2 ) > an, this means that f (xi) and p(xi) have the same sign. Thus, the sign of p(xi) alternates with each i, and by the Intermediate Value Theorem p, has a root in the interval (xi, xi+1). This makes a total of n + 1 roots, so the degree of p is greater than n, which means that en(f ) > an. There is an equivalent construction in [1]. There, the author uses a function defined as an infinite sum of Chebyshev polynomials.
期刊介绍:
The Monthly''s readers expect a high standard of exposition; they look for articles that inform, stimulate, challenge, enlighten, and even entertain. Monthly articles are meant to be read, enjoyed, and discussed, rather than just archived. Articles may be expositions of old or new results, historical or biographical essays, speculations or definitive treatments, broad developments, or explorations of a single application. Novelty and generality are far less important than clarity of exposition and broad appeal. Appropriate figures, diagrams, and photographs are encouraged.
Notes are short, sharply focused, and possibly informal. They are often gems that provide a new proof of an old theorem, a novel presentation of a familiar theme, or a lively discussion of a single issue.
Abstracts for articles or notes should entice the prospective reader into exploring the subject of the paper and should make it clear to the reader why this paper is interesting and important. The abstract should highlight the concepts of the paper rather than summarize the mechanics. The abstract is the first impression of the paper, not a technical summary of the paper. Excessive use of notation is discouraged as it can limit the interest of the broad readership of the MAA, and can limit search-ability of the article.