Defining an Affine Partition Algebra

Pub Date : 2023-02-02 DOI:10.1007/s10468-022-10196-5
Samuel Creedon, Maud De Visscher
{"title":"Defining an Affine Partition Algebra","authors":"Samuel Creedon,&nbsp;Maud De Visscher","doi":"10.1007/s10468-022-10196-5","DOIUrl":null,"url":null,"abstract":"<div><p>We define an affine partition algebra by generators and relations and prove a variety of basic results regarding this new algebra analogous to those of other affine diagram algebras. In particular we show that it extends the Schur-Weyl duality between the symmetric group and the partition algebra. We also relate it to the affine partition category recently defined by J. Brundan and M. Vargas. Moreover, we show that this affine partition category is a <i>full</i> monoidal subcategory of the Heisenberg category.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-022-10196-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-022-10196-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define an affine partition algebra by generators and relations and prove a variety of basic results regarding this new algebra analogous to those of other affine diagram algebras. In particular we show that it extends the Schur-Weyl duality between the symmetric group and the partition algebra. We also relate it to the affine partition category recently defined by J. Brundan and M. Vargas. Moreover, we show that this affine partition category is a full monoidal subcategory of the Heisenberg category.

分享
查看原文
定义仿射划分代数
我们通过生成器和关系定义了仿射分治代数,并证明了有关这个新代数的各种基本结果,类似于其他仿射图代数的结果。特别是,我们证明它扩展了对称群与分治代数之间的舒尔-韦尔对偶性。我们还将它与布伦丹(J. Brundan)和巴尔加斯(M. Vargas)最近定义的仿射划分范畴联系起来。此外,我们还证明了这个仿射划分范畴是海森堡范畴的一个完整单模子范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信