Dimensions of Network Polymers: Universal Relationship for the Ratio between Mean-Square Radius of Gyration and Graph Diameter

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Hidetaka Tobita
{"title":"Dimensions of Network Polymers: Universal Relationship for the Ratio between Mean-Square Radius of Gyration and Graph Diameter","authors":"Hidetaka Tobita","doi":"10.1002/mats.202300012","DOIUrl":null,"url":null,"abstract":"<p>Mean-square radius of gyration <i>Rg</i><sup>2</sup> and the graph diameter <i>D</i>, which describe the dimensions of polymers, are investigated for the network polymers. Both for the random and nonrandom statistical networks whose cycle rank is <i>r</i>, a linear relationship <i>Rg</i><sup>2</sup> = <i>a<sub>r</sub> D</i> applies. The ratio <i>ϕ</i> of <i>a<sub>r</sub></i> against the corresponding ring-free architecture <i>a</i><sub>0</sub>, <i>ϕ</i><sub><i>r</i></sub> = <i>a<sub>r</sub></i>/<i>a</i><sub>0</sub> has a universal relationship applicable both for the random and nonrandom networks with <i>ϕ</i><sub><i>r</i></sub>∝<i>r</i><sup>−0.25</sup> for large <i>r</i>’s, and an empirical relationship, <i>ϕ</i><sub><i>r</i></sub> = [(1 + <i>r</i>)<sup>−2/3</sup> + <i>r</i>/2]<sup>−0.25</sup> is proposed. For the polymer fraction having a given number of <i>r</i>, the nonrandom nature of crosslinking tends to make both <i>Rg</i><sup>2</sup> and <i>D</i> larger compared with the corresponding random networks, except for the limited cases with small values of <i>r</i>’s.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202300012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mean-square radius of gyration Rg2 and the graph diameter D, which describe the dimensions of polymers, are investigated for the network polymers. Both for the random and nonrandom statistical networks whose cycle rank is r, a linear relationship Rg2 = ar D applies. The ratio ϕ of ar against the corresponding ring-free architecture a0, ϕr = ar/a0 has a universal relationship applicable both for the random and nonrandom networks with ϕrr−0.25 for large r’s, and an empirical relationship, ϕr = [(1 + r)−2/3 + r/2]−0.25 is proposed. For the polymer fraction having a given number of r, the nonrandom nature of crosslinking tends to make both Rg2 and D larger compared with the corresponding random networks, except for the limited cases with small values of r’s.

Abstract Image

网络聚合物的尺寸:回转均方半径与图形直径之比的普遍关系
研究了描述聚合物尺寸的均方旋转半径Rg2和图径D。对于循环秩为r的随机和非随机统计网络,Rg2 = ar D均适用线性关系。ar的ϕ与相应的无环结构a0, ϕr = ar/a0的比值具有适用于随机和非随机网络的普遍关系,对于较大的r, ϕr∝r - 0.25,并且提出了经验关系,ϕr = [(1 + r) - 2/3 + r/2] - 0.25。对于具有给定r值的聚合物分数,除了r值较小的有限情况外,交联的非随机性质往往使Rg2和D比相应的随机网络更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信