Zhongqi Miao, Stella X. Yu, K. Landolt, M. Koneff, Timothy P. White, Luke J. Fara, E. Hlavacek, B. Pickens, Travis J. Harrison, W. Getz
{"title":"Challenges and solutions for automated avian recognition in aerial imagery","authors":"Zhongqi Miao, Stella X. Yu, K. Landolt, M. Koneff, Timothy P. White, Luke J. Fara, E. Hlavacek, B. Pickens, Travis J. Harrison, W. Getz","doi":"10.1002/rse2.318","DOIUrl":null,"url":null,"abstract":"Remote aerial sensing provides a non‐invasive, large geographical‐scale technology for avian monitoring, but the manual processing of images limits its development and applications. Artificial Intelligence (AI) methods can be used to mitigate this manual image processing requirement. The implementation of AI methods, however, has several challenges: (1) imbalanced (i.e., long‐tailed) data distribution, (2) annotation uncertainty in categorization, and (3) dataset discrepancies across different study sites. Here we use aerial imagery data of waterbirds around Cape Cod and Lake Michigan in the United States to examine how these challenges limit avian recognition performance. We review existing solutions and demonstrate as use cases how methods like Label Distribution Aware Marginal Loss with Deferred Re‐Weighting, hierarchical classification, and FixMatch address the three challenges. We also present a new approach to tackle the annotation uncertainty challenge using a Soft‐fine Pseudo‐Label methodology. Finally, we aim with this paper to increase awareness in the ecological remote sensing community of these challenges and bridge the gap between ecological applications and state‐of‐the‐art computer science, thereby opening new doors to future research.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.318","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Remote aerial sensing provides a non‐invasive, large geographical‐scale technology for avian monitoring, but the manual processing of images limits its development and applications. Artificial Intelligence (AI) methods can be used to mitigate this manual image processing requirement. The implementation of AI methods, however, has several challenges: (1) imbalanced (i.e., long‐tailed) data distribution, (2) annotation uncertainty in categorization, and (3) dataset discrepancies across different study sites. Here we use aerial imagery data of waterbirds around Cape Cod and Lake Michigan in the United States to examine how these challenges limit avian recognition performance. We review existing solutions and demonstrate as use cases how methods like Label Distribution Aware Marginal Loss with Deferred Re‐Weighting, hierarchical classification, and FixMatch address the three challenges. We also present a new approach to tackle the annotation uncertainty challenge using a Soft‐fine Pseudo‐Label methodology. Finally, we aim with this paper to increase awareness in the ecological remote sensing community of these challenges and bridge the gap between ecological applications and state‐of‐the‐art computer science, thereby opening new doors to future research.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.