{"title":"Quantifying over information change with common knowledge","authors":"Thomas Ågotnes, Rustam Galimullin","doi":"10.1007/s10458-023-09601-0","DOIUrl":null,"url":null,"abstract":"<div><p>Public announcement logic (PAL) extends multi-agent epistemic logic with dynamic operators modelling the effects of public communication. Allowing quantification over public announcements lets us reason about the <i>existence</i> of an announcement that reaches a certain epistemic goal. Two notable examples of logics of quantified announcements are arbitrary public announcement logic (APAL) and group announcement logic (GAL). While the notion of common knowledge plays an important role in PAL, and in particular in characterisations of epistemic states that an agent or a group of agents might make come about by performing public announcements, extensions of APAL and GAL with common knowledge still haven’t been studied in detail. That is what we do in this paper. In particular, we consider both conservative extensions, where the semantics of the quantifiers is not changed, as well as extensions where the scope of quantification also includes common knowledge formulas. We compare the expressivity of these extensions relative to each other and other connected logics, and provide sound and complete axiomatisations. Finally, we show how the completeness results can be used for other logics with quantification over information change.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-023-09601-0.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09601-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Public announcement logic (PAL) extends multi-agent epistemic logic with dynamic operators modelling the effects of public communication. Allowing quantification over public announcements lets us reason about the existence of an announcement that reaches a certain epistemic goal. Two notable examples of logics of quantified announcements are arbitrary public announcement logic (APAL) and group announcement logic (GAL). While the notion of common knowledge plays an important role in PAL, and in particular in characterisations of epistemic states that an agent or a group of agents might make come about by performing public announcements, extensions of APAL and GAL with common knowledge still haven’t been studied in detail. That is what we do in this paper. In particular, we consider both conservative extensions, where the semantics of the quantifiers is not changed, as well as extensions where the scope of quantification also includes common knowledge formulas. We compare the expressivity of these extensions relative to each other and other connected logics, and provide sound and complete axiomatisations. Finally, we show how the completeness results can be used for other logics with quantification over information change.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.