{"title":"Quantitative Diophantine approximation with congruence conditions","authors":"Mahbub Alam, Anish Ghosh, Shucheng Yu","doi":"10.5802/jtnb.1161","DOIUrl":null,"url":null,"abstract":"In this short paper we prove a quantitative version of the Khintchine-Groshev Theorem with congruence conditions. Our argument relies on a classical argument of Schmidt on counting generic lattice points, which in turn relies on a certain variance bound on the space of lattices.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1161","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
Abstract
In this short paper we prove a quantitative version of the Khintchine-Groshev Theorem with congruence conditions. Our argument relies on a classical argument of Schmidt on counting generic lattice points, which in turn relies on a certain variance bound on the space of lattices.