Trophic status estimation of case-2 water bodies of the Godavari River basin using satellite imagery and artificial neural network (ANN)

IF 1.5 Q4 WATER RESOURCES
Nagalapalli Satish, K. Rajitha, Jagadeesh Anmala, Murari R. R. Varma
{"title":"Trophic status estimation of case-2 water bodies of the Godavari River basin using satellite imagery and artificial neural network (ANN)","authors":"Nagalapalli Satish, K. Rajitha, Jagadeesh Anmala, Murari R. R. Varma","doi":"10.2166/h2oj.2023.034","DOIUrl":null,"url":null,"abstract":"\n \n The dynamics of trophic status estimation of case-2 water bodies on a synoptic mode for frequent intervals is essential for water quality management. The present study attempts to develop trophic status estimation approaches utilizing Landsat-8 and Sentinel-2 images as inputs. The chlorophyll-a concentration, a proxy parameter for trophic status, was estimated using the empirical method, fluorescence line height (FLH) method, and artificial neural network (ANN) approaches using spectral reflectance values as inputs. The outcomes following the empirical approaches revealed the scope of kernel normalized difference vegetation index (kNDVI) (R2 = 0.85; RMSE = 2 μg/l) for estimating the chlorophyll-a concentration using Sentinel-2 images of the Godavari River basin. Though the performance of the FLH method (R2 = 0.91; RMSE = 1.6 μg/l) was superior to kNDVI-based estimation, it lacks the capability to estimate chlorophyll-a concentration above 20 μg/l. Due to the existence of eutrophic regions within the Godavari basin (28%), adopting better approaches like ANN for trophic status estimation is essential. To accomplish the same, the Levenberg–Marquardt algorithm-based ANN was developed using non-redundant bands of Sentinel-2 as inputs, and Sentinel-3 derived chlorophyll-a values as output. The developed architecture was successful in estimating trophic status estimations at all levels.","PeriodicalId":36060,"journal":{"name":"H2Open Journal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"H2Open Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/h2oj.2023.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of trophic status estimation of case-2 water bodies on a synoptic mode for frequent intervals is essential for water quality management. The present study attempts to develop trophic status estimation approaches utilizing Landsat-8 and Sentinel-2 images as inputs. The chlorophyll-a concentration, a proxy parameter for trophic status, was estimated using the empirical method, fluorescence line height (FLH) method, and artificial neural network (ANN) approaches using spectral reflectance values as inputs. The outcomes following the empirical approaches revealed the scope of kernel normalized difference vegetation index (kNDVI) (R2 = 0.85; RMSE = 2 μg/l) for estimating the chlorophyll-a concentration using Sentinel-2 images of the Godavari River basin. Though the performance of the FLH method (R2 = 0.91; RMSE = 1.6 μg/l) was superior to kNDVI-based estimation, it lacks the capability to estimate chlorophyll-a concentration above 20 μg/l. Due to the existence of eutrophic regions within the Godavari basin (28%), adopting better approaches like ANN for trophic status estimation is essential. To accomplish the same, the Levenberg–Marquardt algorithm-based ANN was developed using non-redundant bands of Sentinel-2 as inputs, and Sentinel-3 derived chlorophyll-a values as output. The developed architecture was successful in estimating trophic status estimations at all levels.
基于卫星影像和人工神经网络的哥达瓦里河流域case-2水体营养状况估算
频繁间隔天气模式下的case-2水体营养状态动态估计对水质管理至关重要。本研究试图开发利用Landsat-8和Sentinel-2图像作为输入的营养状态估计方法。利用经验法、荧光线高度(FLH)法和人工神经网络(ANN)方法,以光谱反射率值为输入,估算了叶绿素-a浓度(营养状态的代理参数)。采用实证方法得到的结果揭示了核归一化植被指数(kNDVI)的范围(R2 = 0.85;利用Sentinel-2遥感影像估算哥达瓦里河流域叶绿素-a浓度的RMSE = 2 μg/l。虽然FLH法的性能(R2 = 0.91;RMSE = 1.6 μg/l)优于基于kndvi的估算,但对叶绿素a浓度大于20 μg/l的估算能力不足。由于Godavari盆地内存在富营养区(28%),因此采用ANN等更好的方法进行营养状态估计至关重要。为此,利用Sentinel-2的非冗余波段作为输入,Sentinel-3的叶绿素a值作为输出,开发了基于Levenberg-Marquardt算法的人工神经网络。所开发的体系结构成功地估算了各级的营养状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
H2Open Journal
H2Open Journal Environmental Science-Environmental Science (miscellaneous)
CiteScore
3.30
自引率
4.80%
发文量
47
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信