B. Trochon, V. Bustillo, L. Caner, S. Pasquet, V. Suc, F. Granouillac, A. Probst, J. Probst, T. Tallec, M. Guiresse
{"title":"Main water pathways in cultivated clayey calcisols in molassic hills in southwestern France: Toward spatialization of soil waterlogging","authors":"B. Trochon, V. Bustillo, L. Caner, S. Pasquet, V. Suc, F. Granouillac, A. Probst, J. Probst, T. Tallec, M. Guiresse","doi":"10.1002/vzj2.20272","DOIUrl":null,"url":null,"abstract":"Local waterlogging often occurs on the steep slopes of clayey–calcareous soils in southwestern France, causing nutrients and pollutants transfer to the river bodies and reduced ecosystems services. These soils developed in the Miocene molassic hill formation and are generally impermeable with abundant traces of hydromorphy and heterogenous spatial distribution. This article aims to describe the hydrological functioning of these soils, based on a cross analysis of pedological, hydrological, and geophysical characterizations. Our experimental site is the catchment area located in Auradé (southwestern France). Here, we analyze the flows at the outlet of the studied watershed together with piezometric and climatic monitoring from September 2020 to September 2021. We show that the hydrological year is divided into three phases: first, a soil recharge phase with an effective rainfall of about 100 mm; second, a saturation phase, when 80% of the effective precipitation is drained mostly by runoff and hypodermic flows; third, a drying phase. Soil waterlogging events usually occur during the saturation phase. They are due to several forms of flow: surface runoff associated with return flow, hypodermic flow caused by the presence of soil layers with lower hydraulic conductivity in the subsurface (swelling clays and plowing sole) and groundwater flow with intermittent connection of the soil water table in the hillside to the alluvial groundwater table. We also conducted independent seismic refraction tomography analyses that validate localized waterlogging patterns along the catchment and open the way to spatializing areas with high waterlogging potential at the scale of the study plot.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"22 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20272","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Local waterlogging often occurs on the steep slopes of clayey–calcareous soils in southwestern France, causing nutrients and pollutants transfer to the river bodies and reduced ecosystems services. These soils developed in the Miocene molassic hill formation and are generally impermeable with abundant traces of hydromorphy and heterogenous spatial distribution. This article aims to describe the hydrological functioning of these soils, based on a cross analysis of pedological, hydrological, and geophysical characterizations. Our experimental site is the catchment area located in Auradé (southwestern France). Here, we analyze the flows at the outlet of the studied watershed together with piezometric and climatic monitoring from September 2020 to September 2021. We show that the hydrological year is divided into three phases: first, a soil recharge phase with an effective rainfall of about 100 mm; second, a saturation phase, when 80% of the effective precipitation is drained mostly by runoff and hypodermic flows; third, a drying phase. Soil waterlogging events usually occur during the saturation phase. They are due to several forms of flow: surface runoff associated with return flow, hypodermic flow caused by the presence of soil layers with lower hydraulic conductivity in the subsurface (swelling clays and plowing sole) and groundwater flow with intermittent connection of the soil water table in the hillside to the alluvial groundwater table. We also conducted independent seismic refraction tomography analyses that validate localized waterlogging patterns along the catchment and open the way to spatializing areas with high waterlogging potential at the scale of the study plot.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.