{"title":"On localized signature and higher rho invariant of fibered manifolds","authors":"Hongzhi Liu, Jinmin Wang","doi":"10.4171/jncg/426","DOIUrl":null,"url":null,"abstract":"Higher index of signature operator is a far reaching generalization of signature of a closed oriented manifold. When two closed oriented manifolds are homotopy equivalent, one can define a secondary invariant of the relative signature operator called higher rho invariant. The higher rho invariant detects the topological nonrigidity of a manifold. In this paper, we prove product formulas for higher index and higher rho invariant of signature operator on fibered manifolds. Our result implies the classical product formula for numerical signature of fiber manifolds obtained by Chern, Hirzebruch, and Serre in \"On the index of a fibered manifold\". We also give a new proof of the product formula for higher rho invariant of signature operator on product manifolds, which is parallel to the product formula for higher rho invariant of Dirac operator on product manifolds obtained by Xie and Yu in \"Positive scalar curvature, higher rho invariants and localization algebras\" and Zeidler in \"Positive scalar curvature and product formulas for secondary index invariants\".","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/426","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Higher index of signature operator is a far reaching generalization of signature of a closed oriented manifold. When two closed oriented manifolds are homotopy equivalent, one can define a secondary invariant of the relative signature operator called higher rho invariant. The higher rho invariant detects the topological nonrigidity of a manifold. In this paper, we prove product formulas for higher index and higher rho invariant of signature operator on fibered manifolds. Our result implies the classical product formula for numerical signature of fiber manifolds obtained by Chern, Hirzebruch, and Serre in "On the index of a fibered manifold". We also give a new proof of the product formula for higher rho invariant of signature operator on product manifolds, which is parallel to the product formula for higher rho invariant of Dirac operator on product manifolds obtained by Xie and Yu in "Positive scalar curvature, higher rho invariants and localization algebras" and Zeidler in "Positive scalar curvature and product formulas for secondary index invariants".
期刊介绍:
The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular:
Hochschild and cyclic cohomology
K-theory and index theory
Measure theory and topology of noncommutative spaces, operator algebras
Spectral geometry of noncommutative spaces
Noncommutative algebraic geometry
Hopf algebras and quantum groups
Foliations, groupoids, stacks, gerbes
Deformations and quantization
Noncommutative spaces in number theory and arithmetic geometry
Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.