Novel Deleterious nsSNPs within MEFV Gene that Could Be Used as Diagnostic Markers to Predict Hereditary Familial Mediterranean Fever: Using Bioinformatics Analysis

Q1 Biochemistry, Genetics and Molecular Biology
Mujahed I. Mustafa, Tebyan A. Abdelhameed, F. A. Abdelrhman, Soada A. Osman, Mohamed A. Hassan
{"title":"Novel Deleterious nsSNPs within MEFV Gene that Could Be Used as Diagnostic Markers to Predict Hereditary Familial Mediterranean Fever: Using Bioinformatics Analysis","authors":"Mujahed I. Mustafa, Tebyan A. Abdelhameed, F. A. Abdelrhman, Soada A. Osman, Mohamed A. Hassan","doi":"10.1101/424796","DOIUrl":null,"url":null,"abstract":"Background Familial Mediterranean Fever (FMF) is the most common auto inflammatory disease (AID) affecting mainly the ethnic groups originating from Mediterranean basin, we aimed to identify the pathogenic SNPs in MEFV by computational analysis software. Methods We carried out in silico prediction of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structure and function. Result 23 novel mutations out of 857 nsSNPs that are found to be deleterious effect on the MEFV structure and function. Conclusion This is the first in silico analysis in MEFV gene to prioritize SNPs for further genetic mapping studies. After using multiple bioinformatics tools to compare and rely on the results predicted, we found 23 novel mutations that may cause FMF disease and it could be used as diagnostic markers for Mediterranean basin populations.","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2019 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/424796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8

Abstract

Background Familial Mediterranean Fever (FMF) is the most common auto inflammatory disease (AID) affecting mainly the ethnic groups originating from Mediterranean basin, we aimed to identify the pathogenic SNPs in MEFV by computational analysis software. Methods We carried out in silico prediction of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structure and function. Result 23 novel mutations out of 857 nsSNPs that are found to be deleterious effect on the MEFV structure and function. Conclusion This is the first in silico analysis in MEFV gene to prioritize SNPs for further genetic mapping studies. After using multiple bioinformatics tools to compare and rely on the results predicted, we found 23 novel mutations that may cause FMF disease and it could be used as diagnostic markers for Mediterranean basin populations.
MEFV基因内新的有害非单核苷酸多态性可作为预测遗传性家族性地中海热的诊断标记:应用生物信息学分析
背景家族性地中海热(Familial Mediterranean Fever,FMF)是最常见的自身炎症性疾病,主要影响地中海盆地的少数民族。方法我们使用不同的生物信息学工具对每个SNP的结构效应进行了计算机预测,以预测取代对蛋白质结构和功能的影响。结果857个nsSNPs中发现23个新突变对MEFV的结构和功能有有害影响。结论这是首次对MEFV基因进行计算机分析,为进一步的基因定位研究确定SNPs的优先顺序。在使用多种生物信息学工具对预测结果进行比较和依赖后,我们发现了23种可能导致FMF疾病的新突变,它可以作为地中海盆地人群的诊断标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Bioinformatics
Advances in Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信