An extension of the reflexive property of rings

Q2 Mathematics
Arnab Bhattacharjee
{"title":"An extension of the reflexive property of rings","authors":"Arnab Bhattacharjee","doi":"10.1016/j.ajmsc.2018.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Mason introduced the notion of reflexive property of rings as a generalization of reduced rings. For a ring endomorphism <span><math><mi>α</mi></math></span>, Krempa studied <span><math><mi>α</mi></math></span>-rigid rings as an extension of reduced rings. In this note, we introduce the notion of <span><math><mi>α</mi></math></span>-quasi reflexive rings as a generalization of <span><math><mi>α</mi></math></span>-rigid rings and a natural extension of the reflexive property to ring endomorphisms. We investigate various properties of these rings and also study ring theoretic extensions such as polynomial rings, trivial extensions, right (left) quotient rings, Dorroh extensions etc. over these rings.</p></div>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":"25 2","pages":"Pages 214-230"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ajmsc.2018.11.003","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319516618302159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Mason introduced the notion of reflexive property of rings as a generalization of reduced rings. For a ring endomorphism α, Krempa studied α-rigid rings as an extension of reduced rings. In this note, we introduce the notion of α-quasi reflexive rings as a generalization of α-rigid rings and a natural extension of the reflexive property to ring endomorphisms. We investigate various properties of these rings and also study ring theoretic extensions such as polynomial rings, trivial extensions, right (left) quotient rings, Dorroh extensions etc. over these rings.

环自反性的一个推广
梅森将环的自反性作为约简环的推广引入了环的概念。对于环自同态α, Krempa研究了α-刚性环作为约简环的延伸。本文引入了α-拟自反环的概念,作为α-刚性环的推广和自反性质对环自同态的自然推广。我们研究了这些环的各种性质,并研究了环理论的扩展,如多项式环、平凡扩展、右(左)商环、Dorroh扩展等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信