Bubbling solutions for a planar exponential nonlinear elliptic equation with a singular source

IF 1.5 3区 数学 Q1 MATHEMATICS
Jingyi Dong, Jiamei Hu, Yibin Zhang
{"title":"Bubbling solutions for a planar exponential nonlinear elliptic equation with a singular source","authors":"Jingyi Dong, Jiamei Hu, Yibin Zhang","doi":"10.57262/ade027-0304-147","DOIUrl":null,"url":null,"abstract":"Let $\\Omega$ be a bounded domain in $\\mathbb{R}^2$ with smooth boundary, we study the following elliptic Dirichlet problem \\begin{equation*} \\aligned \\left\\{\\aligned &-\\Delta\\upsilon= e^{\\upsilon}-s\\phi_1-4\\pi\\alpha\\delta_p-h(x)\\,\\,\\,\\, \\,\\textrm{in}\\,\\,\\,\\,\\,\\Omega,\\\\[2mm] &\\upsilon=0 \\quad\\quad\\quad\\quad\\quad\\quad \\quad\\qquad\\qquad\\quad\\quad\\, \\textrm{on}\\,\\ \\,\\partial\\Omega, \\endaligned\\right. \\endaligned \\end{equation*} where $s>0$ is a large parameter, $h\\in C^{0,\\gamma}(\\overline{\\Omega})$, $p\\in\\Omega$, $\\alpha\\in(-1,+\\infty)\\setminus\\mathbb{N}$, $\\delta_p$ denotes the Dirac measure supported at point $p$ and $\\phi_1$ is a positive first eigenfunction of the problem $-\\Delta\\phi=\\lambda\\phi$ under Dirichlet boundary condition in $\\Omega$. If $p$ is a strict local maximum point of $\\phi_1$, we show that such a problem has a family of solutions $\\upsilon_s$ with arbitrary $m$ bubbles accumulating to $p$, and the quantity $\\int_{\\Omega}e^{\\upsilon_s}\\rightarrow8\\pi(m+1+\\alpha)\\phi_1(p)$ as $s\\rightarrow+\\infty$.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade027-0304-147","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\Omega$ be a bounded domain in $\mathbb{R}^2$ with smooth boundary, we study the following elliptic Dirichlet problem \begin{equation*} \aligned \left\{\aligned &-\Delta\upsilon= e^{\upsilon}-s\phi_1-4\pi\alpha\delta_p-h(x)\,\,\,\, \,\textrm{in}\,\,\,\,\,\Omega,\\[2mm] &\upsilon=0 \quad\quad\quad\quad\quad\quad \quad\qquad\qquad\quad\quad\, \textrm{on}\,\ \,\partial\Omega, \endaligned\right. \endaligned \end{equation*} where $s>0$ is a large parameter, $h\in C^{0,\gamma}(\overline{\Omega})$, $p\in\Omega$, $\alpha\in(-1,+\infty)\setminus\mathbb{N}$, $\delta_p$ denotes the Dirac measure supported at point $p$ and $\phi_1$ is a positive first eigenfunction of the problem $-\Delta\phi=\lambda\phi$ under Dirichlet boundary condition in $\Omega$. If $p$ is a strict local maximum point of $\phi_1$, we show that such a problem has a family of solutions $\upsilon_s$ with arbitrary $m$ bubbles accumulating to $p$, and the quantity $\int_{\Omega}e^{\upsilon_s}\rightarrow8\pi(m+1+\alpha)\phi_1(p)$ as $s\rightarrow+\infty$.
一类奇异源平面指数非线性椭圆型方程的气泡解
让 $\Omega$ 是中有界的定义域 $\mathbb{R}^2$ 在光滑边界下,研究了椭圆型狄利克雷问题 \begin{equation*} \aligned \left\{\aligned &-\Delta\upsilon= e^{\upsilon}-s\phi_1-4\pi\alpha\delta_p-h(x)\,\,\,\, \,\textrm{in}\,\,\,\,\,\Omega,\\[2mm] &\upsilon=0 \quad\quad\quad\quad\quad\quad \quad\qquad\qquad\quad\quad\, \textrm{on}\,\ \,\partial\Omega, \endaligned\right. \endaligned \end{equation*} 在哪里 $s>0$ 是一个大参数, $h\in C^{0,\gamma}(\overline{\Omega})$, $p\in\Omega$, $\alpha\in(-1,+\infty)\setminus\mathbb{N}$, $\delta_p$ 表示点处支持的狄拉克测度 $p$ 和 $\phi_1$ 问题的第一特征函数是正的吗 $-\Delta\phi=\lambda\phi$ 的狄利克雷边界条件下 $\Omega$。如果 $p$ 的严格局部极大值点是 $\phi_1$,我们证明了这样的问题有一系列的解 $\upsilon_s$ 任意的 $m$ 气泡积聚到 $p$,以及数量 $\int_{\Omega}e^{\upsilon_s}\rightarrow8\pi(m+1+\alpha)\phi_1(p)$ as $s\rightarrow+\infty$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信