Bubbling solutions for a planar exponential nonlinear elliptic equation with a singular source

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingyi Dong, Jiamei Hu, Yibin Zhang
{"title":"Bubbling solutions for a planar exponential nonlinear elliptic equation with a singular source","authors":"Jingyi Dong, Jiamei Hu, Yibin Zhang","doi":"10.57262/ade027-0304-147","DOIUrl":null,"url":null,"abstract":"Let $\\Omega$ be a bounded domain in $\\mathbb{R}^2$ with smooth boundary, we study the following elliptic Dirichlet problem \\begin{equation*} \\aligned \\left\\{\\aligned &-\\Delta\\upsilon= e^{\\upsilon}-s\\phi_1-4\\pi\\alpha\\delta_p-h(x)\\,\\,\\,\\, \\,\\textrm{in}\\,\\,\\,\\,\\,\\Omega,\\\\[2mm] &\\upsilon=0 \\quad\\quad\\quad\\quad\\quad\\quad \\quad\\qquad\\qquad\\quad\\quad\\, \\textrm{on}\\,\\ \\,\\partial\\Omega, \\endaligned\\right. \\endaligned \\end{equation*} where $s>0$ is a large parameter, $h\\in C^{0,\\gamma}(\\overline{\\Omega})$, $p\\in\\Omega$, $\\alpha\\in(-1,+\\infty)\\setminus\\mathbb{N}$, $\\delta_p$ denotes the Dirac measure supported at point $p$ and $\\phi_1$ is a positive first eigenfunction of the problem $-\\Delta\\phi=\\lambda\\phi$ under Dirichlet boundary condition in $\\Omega$. If $p$ is a strict local maximum point of $\\phi_1$, we show that such a problem has a family of solutions $\\upsilon_s$ with arbitrary $m$ bubbles accumulating to $p$, and the quantity $\\int_{\\Omega}e^{\\upsilon_s}\\rightarrow8\\pi(m+1+\\alpha)\\phi_1(p)$ as $s\\rightarrow+\\infty$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade027-0304-147","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\Omega$ be a bounded domain in $\mathbb{R}^2$ with smooth boundary, we study the following elliptic Dirichlet problem \begin{equation*} \aligned \left\{\aligned &-\Delta\upsilon= e^{\upsilon}-s\phi_1-4\pi\alpha\delta_p-h(x)\,\,\,\, \,\textrm{in}\,\,\,\,\,\Omega,\\[2mm] &\upsilon=0 \quad\quad\quad\quad\quad\quad \quad\qquad\qquad\quad\quad\, \textrm{on}\,\ \,\partial\Omega, \endaligned\right. \endaligned \end{equation*} where $s>0$ is a large parameter, $h\in C^{0,\gamma}(\overline{\Omega})$, $p\in\Omega$, $\alpha\in(-1,+\infty)\setminus\mathbb{N}$, $\delta_p$ denotes the Dirac measure supported at point $p$ and $\phi_1$ is a positive first eigenfunction of the problem $-\Delta\phi=\lambda\phi$ under Dirichlet boundary condition in $\Omega$. If $p$ is a strict local maximum point of $\phi_1$, we show that such a problem has a family of solutions $\upsilon_s$ with arbitrary $m$ bubbles accumulating to $p$, and the quantity $\int_{\Omega}e^{\upsilon_s}\rightarrow8\pi(m+1+\alpha)\phi_1(p)$ as $s\rightarrow+\infty$.
一类奇异源平面指数非线性椭圆型方程的气泡解
让 $\Omega$ 是中有界的定义域 $\mathbb{R}^2$ 在光滑边界下,研究了椭圆型狄利克雷问题 \begin{equation*} \aligned \left\{\aligned &-\Delta\upsilon= e^{\upsilon}-s\phi_1-4\pi\alpha\delta_p-h(x)\,\,\,\, \,\textrm{in}\,\,\,\,\,\Omega,\\[2mm] &\upsilon=0 \quad\quad\quad\quad\quad\quad \quad\qquad\qquad\quad\quad\, \textrm{on}\,\ \,\partial\Omega, \endaligned\right. \endaligned \end{equation*} 在哪里 $s>0$ 是一个大参数, $h\in C^{0,\gamma}(\overline{\Omega})$, $p\in\Omega$, $\alpha\in(-1,+\infty)\setminus\mathbb{N}$, $\delta_p$ 表示点处支持的狄拉克测度 $p$ 和 $\phi_1$ 问题的第一特征函数是正的吗 $-\Delta\phi=\lambda\phi$ 的狄利克雷边界条件下 $\Omega$。如果 $p$ 的严格局部极大值点是 $\phi_1$,我们证明了这样的问题有一系列的解 $\upsilon_s$ 任意的 $m$ 气泡积聚到 $p$,以及数量 $\int_{\Omega}e^{\upsilon_s}\rightarrow8\pi(m+1+\alpha)\phi_1(p)$ as $s\rightarrow+\infty$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信