Oscillating Cosmological Solutions in the Modified Theory of Induced Gravity

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
F. Zaripov
{"title":"Oscillating Cosmological Solutions in the Modified Theory of Induced Gravity","authors":"F. Zaripov","doi":"10.1155/2019/1502453","DOIUrl":null,"url":null,"abstract":"This work is the extension of author’s research, where the modified theory of induced gravity (MTIG) is proposed. In the framework of the MTIG, the mechanism of phase transitions and the description of multiphase behavior of the cosmological scenario are proposed. The theory describes two systems (stages): Einstein (ES) and “restructuring” (RS). This process resembles the phenomenon of a phase transition, where different phases (Einstein’s gravitational systems, but with different constants) pass into each other. The hypothesis that such transitions are random and lead to stochastic behavior of cosmological parameters is considered. In our model, effective gravitational and cosmological “constants” arise, which are defined by the “mean square” of the scalar fields. These parameters can be compared with observations related to the phenomenon of dark energy. The aim of the work is to solve equations of MTIG for the case of a quadratic potential and compare them with observational cosmology data. The interaction of fundamental scalar fields and matter in the form of an ideal fluid is introduced and investigated. For the case of Friedmann-Robertson-Walker space-time, numerical solutions of nonlinear MTIG equations are obtained using the qualitative theory of dynamical systems and mathematical computer programs. For the case of a linear potential, examples joining of solutions, the ES and RS stages, of the evolution of the cosmological model are given. It is shown that the values of such parameters as “Hubble parameter” and gravitational and cosmological “constants” in the RS stage contain solutions oscillating near monotonically developing averages or have stochastic behavior due to random transitions to different stages (RS or ES). Such a stochastic behavior might be at the origin of the tension between CMB measurements of the value of the Hubble parameter today and its local measurements.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/1502453","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2019/1502453","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4

Abstract

This work is the extension of author’s research, where the modified theory of induced gravity (MTIG) is proposed. In the framework of the MTIG, the mechanism of phase transitions and the description of multiphase behavior of the cosmological scenario are proposed. The theory describes two systems (stages): Einstein (ES) and “restructuring” (RS). This process resembles the phenomenon of a phase transition, where different phases (Einstein’s gravitational systems, but with different constants) pass into each other. The hypothesis that such transitions are random and lead to stochastic behavior of cosmological parameters is considered. In our model, effective gravitational and cosmological “constants” arise, which are defined by the “mean square” of the scalar fields. These parameters can be compared with observations related to the phenomenon of dark energy. The aim of the work is to solve equations of MTIG for the case of a quadratic potential and compare them with observational cosmology data. The interaction of fundamental scalar fields and matter in the form of an ideal fluid is introduced and investigated. For the case of Friedmann-Robertson-Walker space-time, numerical solutions of nonlinear MTIG equations are obtained using the qualitative theory of dynamical systems and mathematical computer programs. For the case of a linear potential, examples joining of solutions, the ES and RS stages, of the evolution of the cosmological model are given. It is shown that the values of such parameters as “Hubble parameter” and gravitational and cosmological “constants” in the RS stage contain solutions oscillating near monotonically developing averages or have stochastic behavior due to random transitions to different stages (RS or ES). Such a stochastic behavior might be at the origin of the tension between CMB measurements of the value of the Hubble parameter today and its local measurements.
修正诱导引力理论中的振荡宇宙学解
本文是作者在前人研究基础上的延伸,提出了修正的感应重力理论。在MTIG的框架下,提出了相变机制和宇宙场景多相行为的描述。该理论描述了两个系统(阶段):爱因斯坦(ES)和“重构”(RS)。这个过程类似于相变现象,不同的相(爱因斯坦的引力系统,但具有不同的常数)相互传递。考虑了这种跃迁是随机的并导致宇宙学参数的随机行为的假设。在我们的模型中,产生了有效的引力和宇宙学“常数”,它们由标量场的“均方”定义。这些参数可以与观测到的暗能量现象进行比较。这项工作的目的是解决二次势情况下的MTIG方程,并将其与观测宇宙学数据进行比较。介绍并研究了以理想流体形式存在的基本标量场与物质的相互作用。对于friedman - robertson - walker时空情况,利用动力系统定性理论和数学计算机程序,得到了非线性MTIG方程的数值解。对于线性势的情况,给出了宇宙学模型演化的ES和RS阶段解连接的例子。结果表明,RS阶段的“哈勃参数”、引力和宇宙学“常数”等参数的值包含在单调发展平均值附近振荡的解,或者由于随机过渡到不同阶段(RS或ES)而具有随机行为。这种随机行为可能是今天哈勃参数的CMB测量值与其局部测量值之间紧张关系的根源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信