Graph embedded dynamic mode decomposition for stock price prediction

IF 0.3 Q4 BUSINESS, FINANCE
Andy M. Yip, W. Ng, Ka-Wai Siu, Albert C. Cheung, Michael K. Ng
{"title":"Graph embedded dynamic mode decomposition for stock price prediction","authors":"Andy M. Yip, W. Ng, Ka-Wai Siu, Albert C. Cheung, Michael K. Ng","doi":"10.3233/af-220432","DOIUrl":null,"url":null,"abstract":"We present an algorithmic trading strategy based upon a graph version of the dynamic mode decomposition (DMD) model. Unlike the traditional DMD model which tries to characterize a stock’s dynamics based on all other stocks in a universe, the proposed model characterizes a stock’s dynamics based only on stocks that are deemed relevant to the stock in question. The relevance between each pair of stocks in a universe is represented as a directed graph and is updated dynamically. The incorporation of a graph model into DMD effects a model reduction that avoids overfitting of data and improves the quality of the trend predictions. We show that, in a practical setting, the precision and recall rate of the proposed model are significantly better than the traditional DMD and the benchmarks. The proposed model yields portfolios that have more stable returns in most of the universes we backtested.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"10 1","pages":"39-51"},"PeriodicalIF":0.3000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/af-220432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We present an algorithmic trading strategy based upon a graph version of the dynamic mode decomposition (DMD) model. Unlike the traditional DMD model which tries to characterize a stock’s dynamics based on all other stocks in a universe, the proposed model characterizes a stock’s dynamics based only on stocks that are deemed relevant to the stock in question. The relevance between each pair of stocks in a universe is represented as a directed graph and is updated dynamically. The incorporation of a graph model into DMD effects a model reduction that avoids overfitting of data and improves the quality of the trend predictions. We show that, in a practical setting, the precision and recall rate of the proposed model are significantly better than the traditional DMD and the benchmarks. The proposed model yields portfolios that have more stable returns in most of the universes we backtested.
基于图嵌入动态模式分解的股票价格预测
我们提出了一种基于动态模式分解(DMD)模型的图形版本的算法交易策略。传统的DMD模型试图基于宇宙中的所有其他股票来表征股票的动态,与此不同,所提出的模型仅基于被认为与所讨论的股票相关的股票来表征股市的动态。宇宙中每对股票之间的相关性表示为有向图,并动态更新。将图形模型合并到DMD中可以减少模型,避免数据的过拟合,并提高趋势预测的质量。我们表明,在实际环境中,所提出的模型的精度和召回率明显优于传统的DMD和基准。所提出的模型产生的投资组合在我们回溯测试的大多数宇宙中都具有更稳定的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmic Finance
Algorithmic Finance BUSINESS, FINANCE-
CiteScore
0.40
自引率
0.00%
发文量
6
期刊介绍: Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信