Qu Jili, Tao Huan, Qu Weiqing, Han Guoqi, Liu Hongmei, Patanmuhan Abulimiti, Semaierjiang Maimaitiyusupu, A. Batugin
{"title":"Modification of mechanical properties of Shanghai clayey soil with expanded polystyrene","authors":"Qu Jili, Tao Huan, Qu Weiqing, Han Guoqi, Liu Hongmei, Patanmuhan Abulimiti, Semaierjiang Maimaitiyusupu, A. Batugin","doi":"10.1515/secm-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract In the present study, the resistance characteristics of Shanghai clayey soil-expanded polystyrene (EPS) mixture have been explored, using unconfined compressive and consolidation and rebound tests. EPS beads were mixed homogenously with clay soil in accordance with different mass ratios of beads to soil, that is, 0, 0.02, and 0.03%. Four particle sizes of EPS were used in the mixtures, that is, 0.5, 1, 3, and 7 mm, to reconstruct the samples. The experimental results indicated that (1) under the condition of unconfined compressive test, with the increase of EPS particle size, the compressive strength of reinforced soil increases significantly, but the compressive strength of reinforced soil decreases compared with the control sample, and it also decreases with high content compared to low EPS content; (2) under the consolidation and rebound test, compression index and rebound index of reinforced soil increased obviously compared with the control sample, but the compression modulus of reinforced soil decreases significantly; (3) in addition, the ductility of reinforced soil decreases with the increase of EPS particle size but increases compared with the control sample. At the same time, the stiffness of reinforced soil is much decreased compared with the control sample. Finally, the cause of deformation characteristics of reinforced soil was explained based on the feature of EPS material and the interaction between soil particles and particles of EPS beads.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"29 1","pages":"37 - 49"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0004","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In the present study, the resistance characteristics of Shanghai clayey soil-expanded polystyrene (EPS) mixture have been explored, using unconfined compressive and consolidation and rebound tests. EPS beads were mixed homogenously with clay soil in accordance with different mass ratios of beads to soil, that is, 0, 0.02, and 0.03%. Four particle sizes of EPS were used in the mixtures, that is, 0.5, 1, 3, and 7 mm, to reconstruct the samples. The experimental results indicated that (1) under the condition of unconfined compressive test, with the increase of EPS particle size, the compressive strength of reinforced soil increases significantly, but the compressive strength of reinforced soil decreases compared with the control sample, and it also decreases with high content compared to low EPS content; (2) under the consolidation and rebound test, compression index and rebound index of reinforced soil increased obviously compared with the control sample, but the compression modulus of reinforced soil decreases significantly; (3) in addition, the ductility of reinforced soil decreases with the increase of EPS particle size but increases compared with the control sample. At the same time, the stiffness of reinforced soil is much decreased compared with the control sample. Finally, the cause of deformation characteristics of reinforced soil was explained based on the feature of EPS material and the interaction between soil particles and particles of EPS beads.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.