A. Lebed’, R. I. Verkhodanov, Z. A. Lebed, D. Bludova
{"title":"Copper and zinc extraction from underspoil waters using sulfur solution in sodium hydroxide","authors":"A. Lebed’, R. I. Verkhodanov, Z. A. Lebed, D. Bludova","doi":"10.17580/nfm.2022.01.02","DOIUrl":null,"url":null,"abstract":"During the passage of atmospheric precipitates through the porous dump body, the products of oxidation of sulfide minerals are dissolved. As a result, underspoil waters with low pH values and a significant amount of dissolved metals are formed. For the most part, all types of the sewage produced by mining and processing enterprises (underspoil, colliery, pit, drainage) are combined before treatment, which leads to the formation of a common water yield with complex chemical composition. According to the existing practice, the combined flow is neutralized with lime milk, which leads to irretrievable losses of non-ferrous metals with mud after neutralization. The use of the sulfiding method as part of the tactics of locally autonomous processing makes it possible to obtain the copper and zinc commercial products suitable for further metallurgical processing. Previously, sulphides of biogenic or chemical nature, as well as hydrogen sulphide, have been used in extraction of metals in the form of sulphides. In this study, we have used sulfur solution in sodium hydroxide with a mass ratio of NaOH:S = 1:1 as an alternative to the old reagents. During the study, the sulfur consumption for copper and zinc extraction were determined. The impact of water pH on zinc extraction is shown. The pilot-scale tests have confirmed the results of laboratory studies. Proposed is a flow chart with the following main operations: copper extraction, zinc extraction and the zinc product conditioning. Copper concentrate with a copper content of 32.9% and zinc concentrate with a zinc content of 48% were obtained. In the resulting deposits, copper is in the form of covellite (CuS), and zinc is in the form of sphalerite (ZnS). Through metal extraction was 99.9% for copper and 99.5% for zinc. DOI:","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonferrous Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17580/nfm.2022.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
During the passage of atmospheric precipitates through the porous dump body, the products of oxidation of sulfide minerals are dissolved. As a result, underspoil waters with low pH values and a significant amount of dissolved metals are formed. For the most part, all types of the sewage produced by mining and processing enterprises (underspoil, colliery, pit, drainage) are combined before treatment, which leads to the formation of a common water yield with complex chemical composition. According to the existing practice, the combined flow is neutralized with lime milk, which leads to irretrievable losses of non-ferrous metals with mud after neutralization. The use of the sulfiding method as part of the tactics of locally autonomous processing makes it possible to obtain the copper and zinc commercial products suitable for further metallurgical processing. Previously, sulphides of biogenic or chemical nature, as well as hydrogen sulphide, have been used in extraction of metals in the form of sulphides. In this study, we have used sulfur solution in sodium hydroxide with a mass ratio of NaOH:S = 1:1 as an alternative to the old reagents. During the study, the sulfur consumption for copper and zinc extraction were determined. The impact of water pH on zinc extraction is shown. The pilot-scale tests have confirmed the results of laboratory studies. Proposed is a flow chart with the following main operations: copper extraction, zinc extraction and the zinc product conditioning. Copper concentrate with a copper content of 32.9% and zinc concentrate with a zinc content of 48% were obtained. In the resulting deposits, copper is in the form of covellite (CuS), and zinc is in the form of sphalerite (ZnS). Through metal extraction was 99.9% for copper and 99.5% for zinc. DOI:
期刊介绍:
Its thematic plan covers all directions of scientific and technical development in non-ferrous metallurgy. The main journal sections include scientific-technical papers on heavy and light non-ferrous metals, noble metals and alloys, rare and rare earth metals, carbon materials, composites and multi-functional coatings, radioactive elements, nanostructured metals and materials, metal forming, automation etc. Theoretical and practical problems of ore mining and mineral processing, production and processing of non-ferrous metals, complex usage of ores, economics and production management, automation of metallurgical processes are widely observed in this journal. "Non-ferrous Metals" journal publishes the papers of well-known scientists and leading metallurgists, elucidates important scientific-technical problems of development of concentrating and metallurgical enterprises, scientific-research institutes and universities in the field of non-ferrous metallurgy, presents new scientific directions and technical innovations in this area. The readers can find in this journal both the articles with applied investigations and with results of fundamental researches that make the base for new technical developments. Publishing according to the approach APC (Article processing charge).