French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity

IF 1.3 Q3 ENGINEERING, CHEMICAL
Y. Astuti, Fauzan Musthafa, Arnelli Arnelli, I. Nurhasanah
{"title":"French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity","authors":"Y. Astuti, Fauzan Musthafa, Arnelli Arnelli, I. Nurhasanah","doi":"10.9767/bcrec.17.1.12554.146-156","DOIUrl":null,"url":null,"abstract":"Bismuth oxide synthesis using hydrothermal method has been conducted. This study aims to examine the effect of the hydrothermal reaction time on product characteristics and photocatalytic activity in degrading methyl orange dye. Bismuth oxide synthesis was initiated by dissolving bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and Na2SO4 in a distilled water and added NaOH gradually. The solution formed was transferred into a Teflon-lined autoclave and heated at 120 °C with time variations of 8–16 h. The formation of bismuth oxide was indicated by the vibrations of the Bi−O−Bi and Bi−O groups and the crystal structure consisting of a-Bi2O3, β-Bi2O3, and g-Bi2O3. In addition, the highest photocatalytic activity can be examined through several factors, such as: content of Bi−O−Bi and Bi−OH groups, crystal structure, band gap values, morphology, and surface area, acquired as a result of the effect of hydrothermal reaction time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.1.12554.146-156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 8

Abstract

Bismuth oxide synthesis using hydrothermal method has been conducted. This study aims to examine the effect of the hydrothermal reaction time on product characteristics and photocatalytic activity in degrading methyl orange dye. Bismuth oxide synthesis was initiated by dissolving bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and Na2SO4 in a distilled water and added NaOH gradually. The solution formed was transferred into a Teflon-lined autoclave and heated at 120 °C with time variations of 8–16 h. The formation of bismuth oxide was indicated by the vibrations of the Bi−O−Bi and Bi−O groups and the crystal structure consisting of a-Bi2O3, β-Bi2O3, and g-Bi2O3. In addition, the highest photocatalytic activity can be examined through several factors, such as: content of Bi−O−Bi and Bi−OH groups, crystal structure, band gap values, morphology, and surface area, acquired as a result of the effect of hydrothermal reaction time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
类炸薯条氧化铋:理化性质、电导率和光催化活性
采用水热法合成了氧化铋。研究了水热反应时间对降解甲基橙染料的产物特性和光催化活性的影响。在蒸馏水中溶解五水硝酸铋(Bi(NO3)3.5H2O)和Na2SO4,并逐渐加入NaOH,引发氧化铋的合成。将形成的溶液转移到铁氟龙热压釜中,在120℃下加热8-16 h。通过Bi−O−Bi和Bi−O基团的振动以及由a- bi2o3、β-Bi2O3和g-Bi2O3组成的晶体结构来表征氧化铋的形成。此外,通过水热反应时间的影响,可以通过Bi−O−Bi和Bi−OH基团的含量、晶体结构、带隙值、形貌和表面积等因素来考察最高的光催化活性。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
6.70%
发文量
52
审稿时长
12 weeks
期刊介绍: Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on general chemical engineering process are not covered and out of scope of this journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信