The p-norm of circulant matrices via Fourier analysis

IF 0.3 Q4 MATHEMATICS
K. R. Sahasranand
{"title":"The p-norm of circulant matrices via Fourier analysis","authors":"K. R. Sahasranand","doi":"10.1515/conop-2021-0123","DOIUrl":null,"url":null,"abstract":"Abstract A recent work derived expressions for the induced p-norm of a special class of circulant matrices A(n, a, b) ∈ ℝn×n, with the diagonal entries equal to a ∈ ℝ and the off-diagonal entries equal to b ≥ 0. We provide shorter proofs for all the results therein using Fourier analysis. The key observation is that a circulant matrix is diagonalized by a DFT matrix. The results comprise an exact expression for ǁAǁp, 1 ≤ p ≤ ∞, where A = A(n, a, b), a ≥ 0 and for ǁAǁ2 where A = A(n, −a, b), a ≥ 0; for the other p-norms of A(n, −a, b), 2 < p < ∞, upper and lower bounds are derived.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2021-0123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract A recent work derived expressions for the induced p-norm of a special class of circulant matrices A(n, a, b) ∈ ℝn×n, with the diagonal entries equal to a ∈ ℝ and the off-diagonal entries equal to b ≥ 0. We provide shorter proofs for all the results therein using Fourier analysis. The key observation is that a circulant matrix is diagonalized by a DFT matrix. The results comprise an exact expression for ǁAǁp, 1 ≤ p ≤ ∞, where A = A(n, a, b), a ≥ 0 and for ǁAǁ2 where A = A(n, −a, b), a ≥ 0; for the other p-norms of A(n, −a, b), 2 < p < ∞, upper and lower bounds are derived.
循环矩阵的p-范数的傅立叶分析
摘要最近的一项工作导出了一类特殊循环矩阵A(n,A,b)∈n的诱导p-范数的表达式ℝn,对角项等于a∈nℝ 并且非对角线条目等于b≥0。我们使用傅立叶分析为其中的所有结果提供了较短的证明。关键的观察结果是循环矩阵被DFT矩阵对角化。结果包括ǁAǁ; p,1≤p≤∞的精确表达式,其中A=A(n,A,b),A≥0;对于A(n,−A,b),2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信