{"title":"Narrowband perfect metasurface absorber based on impedance matching","authors":"M. A. Butt, N. Kazansky","doi":"10.4302/PLP.V12I3.1041","DOIUrl":null,"url":null,"abstract":"We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF References Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, \"Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing\", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, \"Electrically tunable perfect light absorbers as color filters and modulators\", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, \"Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths\", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, \"Electro-optical switch based on continuous metasurface embedded in Si substrate\", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, \"A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials\", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, \"Broadband metasurface solar absorber in the visible and near-infrared region\", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, \"All-dielectric ultra-thin metasurface angular filter\", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., \"Broadband Metamaterial Absorbers\", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., \"Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers\", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, \"Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review\", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, \"Supersensitive and Tunable Nano-Biosensor for Cancer Detection\", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"88-90"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V12I3.1041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 12
Abstract
We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF References Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, "Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, "Electrically tunable perfect light absorbers as color filters and modulators", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, "Electro-optical switch based on continuous metasurface embedded in Si substrate", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, "Broadband metasurface solar absorber in the visible and near-infrared region", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, "All-dielectric ultra-thin metasurface angular filter", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., "Broadband Metamaterial Absorbers", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., "Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, "Supersensitive and Tunable Nano-Biosensor for Cancer Detection", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef
本文采用基于COMSOL软件的有限元方法对一种超材料窄带完美吸收体进行了数值研究。在80 nm厚的金层上放置硅元原子(MAs)的周期阵列。正入射的宽带光被金层阻挡,硅MAs通过散射光来激发表面等离子体。由于电偶极子和磁偶极子的完美阻抗匹配,在1137.5 nm的共振波长处获得了95.7%的最大吸收。吸收对0 ~ 80度的广角入射角不敏感。我们认为所提出的超材料器件可用于太阳能光伏和生化传感应用。程艳,毛小生,吴春林,龚仁哲,“红外非平面等离子体完美吸收体增强敏感折射率传感”,光学材料,53,195-200(2016)。引用本文:陈晓明,陈晓明,“电可调谐光吸收材料的研究进展”,《科学通报》,2018年第8期。引用本文:阮德明,李德明,李金杰,“基于等离子体光栅的可见光和近红外波长完美吸收体的光吸收控制”,科学通报,7,2611(2017)。引用本文:孙艳,凌云,刘涛,黄磊,“基于连续超表面嵌入硅衬底的电光开关”,光电工程学报,5,(2015)朱红红,李强,刘波,罗军,孙生,韩志辉,周磊,赖勇,“基于透明超表面和零折射率材料集成的混合隐形斗篷”,光科学与应用,7,50(2018)。CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor,“可见光和近红外波段的宽带超表面太阳能吸收体”,材料工程,6(6):213(2019)。引用本文:钱强,王超,“全介电超薄超表面角滤波器”,光学学报,44,39(2019)。CrossRef . Yu等,“宽带超材料吸收剂”,光学学报,7,1800995(2019)。引用本文:王晓明,王晓明,“基于导电纤维的柔性超薄超材料吸收体的研究”,材料科学与工程,19,(2018):711-717。[CrossRef] N.L. Kazanskiy, S.N. Khonina, M.A. Butt,“基于金属绝缘体-金属波导的等离子体传感器在折射率传感中的应用:综述”,物理学报,11,11(2020)。陈晓明,张晓明,张晓明,“超灵敏可调纳米生物传感器在癌症检测中的应用”,中国生物医学工程学报,2019,33(4):448 - 448。CrossRef