Effective annotation for the automatic vectorization of cadastral maps

IF 0.7 3区 文学 0 HUMANITIES, MULTIDISCIPLINARY
Rémi Petitpierre, Paul Guhennec
{"title":"Effective annotation for the automatic vectorization of cadastral maps","authors":"Rémi Petitpierre, Paul Guhennec","doi":"10.1093/llc/fqad006","DOIUrl":null,"url":null,"abstract":"\n The great potential brought by large-scale data in the humanities is still hindered by the time and technicality required for making documents digitally intelligible. Within urban studies, historical cadasters have been hitherto largely under-explored despite their informative value. Powerful and generic technologies, based on neural networks, to automate the vectorization of historical maps have recently become available. However, the transfer of these technologies is hampered by the scarcity of interdisciplinary exchanges and a lack of practical literature destinated to humanities scholars, especially on the key step of the pipeline: the annotation. In this article, we propose a set of practical recommendations based on empirical findings on document annotation and automatic vectorization, focusing on the example case of historical cadasters. Our recommendations are generic and easily applicable, based on a solid experience on concrete and diverse projects.","PeriodicalId":45315,"journal":{"name":"Digital Scholarship in the Humanities","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Scholarship in the Humanities","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/llc/fqad006","RegionNum":3,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The great potential brought by large-scale data in the humanities is still hindered by the time and technicality required for making documents digitally intelligible. Within urban studies, historical cadasters have been hitherto largely under-explored despite their informative value. Powerful and generic technologies, based on neural networks, to automate the vectorization of historical maps have recently become available. However, the transfer of these technologies is hampered by the scarcity of interdisciplinary exchanges and a lack of practical literature destinated to humanities scholars, especially on the key step of the pipeline: the annotation. In this article, we propose a set of practical recommendations based on empirical findings on document annotation and automatic vectorization, focusing on the example case of historical cadasters. Our recommendations are generic and easily applicable, based on a solid experience on concrete and diverse projects.
地籍图自动矢量化的有效标注
大规模数据在人文学科中带来的巨大潜力仍然受到使文档数字化所需的时间和技术性的阻碍。在城市研究中,尽管历史地籍具有信息价值,但迄今为止,它们大多未被充分探索。最近,基于神经网络的强大通用技术已经问世,可以自动对历史地图进行矢量化。然而,这些技术的转让受到了跨学科交流的稀缺和人文学者实用文献的缺乏的阻碍,尤其是在管道的关键步骤:注释方面。在这篇文章中,我们基于文献注释和自动矢量化的经验发现,以历史地籍图为例,提出了一套实用的建议。我们的建议是通用的,易于适用,基于在具体和多样化项目方面的丰富经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
25.00%
发文量
78
期刊介绍: DSH or Digital Scholarship in the Humanities is an international, peer reviewed journal which publishes original contributions on all aspects of digital scholarship in the Humanities including, but not limited to, the field of what is currently called the Digital Humanities. Long and short papers report on theoretical, methodological, experimental, and applied research and include results of research projects, descriptions and evaluations of tools, techniques, and methodologies, and reports on work in progress. DSH also publishes reviews of books and resources. Digital Scholarship in the Humanities was previously known as Literary and Linguistic Computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信