{"title":"Effective annotation for the automatic vectorization of cadastral maps","authors":"Rémi Petitpierre, Paul Guhennec","doi":"10.1093/llc/fqad006","DOIUrl":null,"url":null,"abstract":"\n The great potential brought by large-scale data in the humanities is still hindered by the time and technicality required for making documents digitally intelligible. Within urban studies, historical cadasters have been hitherto largely under-explored despite their informative value. Powerful and generic technologies, based on neural networks, to automate the vectorization of historical maps have recently become available. However, the transfer of these technologies is hampered by the scarcity of interdisciplinary exchanges and a lack of practical literature destinated to humanities scholars, especially on the key step of the pipeline: the annotation. In this article, we propose a set of practical recommendations based on empirical findings on document annotation and automatic vectorization, focusing on the example case of historical cadasters. Our recommendations are generic and easily applicable, based on a solid experience on concrete and diverse projects.","PeriodicalId":45315,"journal":{"name":"Digital Scholarship in the Humanities","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Scholarship in the Humanities","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/llc/fqad006","RegionNum":3,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The great potential brought by large-scale data in the humanities is still hindered by the time and technicality required for making documents digitally intelligible. Within urban studies, historical cadasters have been hitherto largely under-explored despite their informative value. Powerful and generic technologies, based on neural networks, to automate the vectorization of historical maps have recently become available. However, the transfer of these technologies is hampered by the scarcity of interdisciplinary exchanges and a lack of practical literature destinated to humanities scholars, especially on the key step of the pipeline: the annotation. In this article, we propose a set of practical recommendations based on empirical findings on document annotation and automatic vectorization, focusing on the example case of historical cadasters. Our recommendations are generic and easily applicable, based on a solid experience on concrete and diverse projects.
期刊介绍:
DSH or Digital Scholarship in the Humanities is an international, peer reviewed journal which publishes original contributions on all aspects of digital scholarship in the Humanities including, but not limited to, the field of what is currently called the Digital Humanities. Long and short papers report on theoretical, methodological, experimental, and applied research and include results of research projects, descriptions and evaluations of tools, techniques, and methodologies, and reports on work in progress. DSH also publishes reviews of books and resources. Digital Scholarship in the Humanities was previously known as Literary and Linguistic Computing.