Design of Basin Irrigation System using Multilayer Perceptron and Radial Basic Function Methods

Q3 Environmental Science
Abdulwahd Kassem, Khalil K. Hamadaminb
{"title":"Design of Basin Irrigation System using Multilayer Perceptron and Radial Basic Function Methods","authors":"Abdulwahd Kassem, Khalil K. Hamadaminb","doi":"10.25130/tjes.30.2.7","DOIUrl":null,"url":null,"abstract":"The common use of an artificial neural network model has been in water resources management and planning. The length, width, and discharge of a basin were measured in this study utilizing field data from 160 Dashti Hawler existing projects. Multilayer Perceptron (MLP) and Radial Basic Function (RBF) networks were employed in the basin irrigation assessment. Input factors included the soil type, the conveyance system effectiveness, and the root zone depth. 130 projects were used for calibration, while the remaining 30 were used for validation. When developing the basin irrigation system, the models’ aforementioned indicators’ performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), relative error (RE), and Nash Sutcliff efficiency (NSE). For the basin's length, width, and discharge, the (R2) values for the MLP model were determined to be 0.97, 0.97, and 0.96, respectively, whereas the corresponding values for the RBF model were 0.88, 0.89, and 0.89. Compared to the RBF model, the values of (MAE) for basin length, width, and discharge for the MLP model were determined to be 8.99, 8.52, and 42.58, respectively. However, the (NSE) values for the models mentioned above were 0.95, 0.96, and 0.94, as well as 0.65, 0.66, and 0.66 for the basin’s length, width, and discharge, respectively. When it comes to building the irrigation system for the basin, the MLP is more precise than RBF depending on the values of (R2), (MAE), and (NSE). Finally, the ANN approach uses additional design options quickly examine which model is computationally efficient.","PeriodicalId":30589,"journal":{"name":"Tikrit Journal of Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjes.30.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The common use of an artificial neural network model has been in water resources management and planning. The length, width, and discharge of a basin were measured in this study utilizing field data from 160 Dashti Hawler existing projects. Multilayer Perceptron (MLP) and Radial Basic Function (RBF) networks were employed in the basin irrigation assessment. Input factors included the soil type, the conveyance system effectiveness, and the root zone depth. 130 projects were used for calibration, while the remaining 30 were used for validation. When developing the basin irrigation system, the models’ aforementioned indicators’ performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), relative error (RE), and Nash Sutcliff efficiency (NSE). For the basin's length, width, and discharge, the (R2) values for the MLP model were determined to be 0.97, 0.97, and 0.96, respectively, whereas the corresponding values for the RBF model were 0.88, 0.89, and 0.89. Compared to the RBF model, the values of (MAE) for basin length, width, and discharge for the MLP model were determined to be 8.99, 8.52, and 42.58, respectively. However, the (NSE) values for the models mentioned above were 0.95, 0.96, and 0.94, as well as 0.65, 0.66, and 0.66 for the basin’s length, width, and discharge, respectively. When it comes to building the irrigation system for the basin, the MLP is more precise than RBF depending on the values of (R2), (MAE), and (NSE). Finally, the ANN approach uses additional design options quickly examine which model is computationally efficient.
基于多层感知机和径向基函数法的流域灌溉系统设计
人工神经网络模型已在水资源管理和规划中得到普遍应用。本研究利用160个Dashti Hawler现有项目的现场数据测量了流域的长度、宽度和流量。采用多层感知器(MLP)和径向基本函数(RBF)网络进行流域灌溉评价。输入因子包括土壤类型、输送系统有效性和根区深度。130个项目用于校准,其余30个项目用于验证。在开发流域灌溉系统时,采用决定系数(R2)、平均绝对误差(MAE)、相对误差(RE)和纳什萨特克利夫效率(NSE)对模型的上述指标进行评价。对于流域的长度、宽度和流量,MLP模型的R2分别为0.97、0.97和0.96,而RBF模型的R2分别为0.88、0.89和0.89。与RBF模型相比,MLP模型的流域长度、流域宽度和流域流量的MAE分别为8.99、8.52和42.58。上述模型的NSE分别为0.95、0.96和0.94,流域长度、宽度和流量的NSE分别为0.65、0.66和0.66。当涉及到为流域建立灌溉系统时,根据(R2)、(MAE)和(NSE)的值,MLP比RBF更精确。最后,人工神经网络方法使用额外的设计选项快速检查哪个模型计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
56
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信