{"title":"The mathematical physical equations satisfied by retarded and advanced Green’s functions","authors":"Huai-Yu Wang","doi":"10.4006/0836-1398-35.4.380","DOIUrl":null,"url":null,"abstract":"In mathematical physics, time-dependent Green’s functions (GFs) are the solutions of differential equations of the first and second time derivatives. Habitually, the time-dependent GFs are Fourier transformed into the frequency space. Then, analytical continuation of the frequency\n is extended to below or above the real axis. After inverse Fourier transformation, retarded and advanced GFs can be obtained, and there may be arbitrariness in such analytical continuation. In the present work, we establish the differential equations from which the retarded and advanced GFs\n are rigorously solved. The key point is that the derivative of the time step function is the Dirac δ function plus an infinitely small quantity, where the latter is not negligible because it embodies the meaning of time delay or time advance. The retarded and advanced GFs defined\n in this paper are the same as the one-body GFs defined with the help of the creation and destruction operators in many-body theory. There is no way to define the causal GF in mathematical physics, and the reason is given. This work puts the initial conditions into differential equations, thereby\n paving a way for solving the problem of why there are motions that are irreversible in time.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Essays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4006/0836-1398-35.4.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In mathematical physics, time-dependent Green’s functions (GFs) are the solutions of differential equations of the first and second time derivatives. Habitually, the time-dependent GFs are Fourier transformed into the frequency space. Then, analytical continuation of the frequency
is extended to below or above the real axis. After inverse Fourier transformation, retarded and advanced GFs can be obtained, and there may be arbitrariness in such analytical continuation. In the present work, we establish the differential equations from which the retarded and advanced GFs
are rigorously solved. The key point is that the derivative of the time step function is the Dirac δ function plus an infinitely small quantity, where the latter is not negligible because it embodies the meaning of time delay or time advance. The retarded and advanced GFs defined
in this paper are the same as the one-body GFs defined with the help of the creation and destruction operators in many-body theory. There is no way to define the causal GF in mathematical physics, and the reason is given. This work puts the initial conditions into differential equations, thereby
paving a way for solving the problem of why there are motions that are irreversible in time.
期刊介绍:
Physics Essays has been established as an international journal dedicated to theoretical and experimental aspects of fundamental problems in Physics and, generally, to the advancement of basic knowledge of Physics. The Journal’s mandate is to publish rigorous and methodological examinations of past, current, and advanced concepts, methods and results in physics research. Physics Essays dedicates itself to the publication of stimulating exploratory, and original papers in a variety of physics disciplines, such as spectroscopy, quantum mechanics, particle physics, electromagnetic theory, astrophysics, space physics, mathematical methods in physics, plasma physics, philosophical aspects of physics, chemical physics, and relativity.