Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom

IF 0.7 4区 数学 Q2 MATHEMATICS
B. Suleimanov
{"title":"Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom","authors":"B. Suleimanov","doi":"10.1090/spmj/1739","DOIUrl":null,"url":null,"abstract":"For the three nonstationary Schrödinger equations \n\n \n \n i\n ℏ\n \n Ψ\n \n τ\n \n \n =\n H\n (\n x\n ,\n y\n ,\n −\n i\n ℏ\n \n ∂\n \n ∂\n x\n \n \n ,\n −\n i\n ℏ\n \n ∂\n \n ∂\n y\n \n \n )\n Ψ\n ,\n \n \\begin{equation*} i\\hbar \\Psi _{\\tau }=H(x,y,-i\\hbar \\frac {\\partial }{\\partial x},-i\\hbar \\frac {\\partial }{\\partial y})\\Psi , \\end{equation*}\n \n\n\n solutions are constructed that correspond to conservative Hamiltonian systems with two degrees of freedom whose general solutions can be represented by those of the second Painlevé equation. These solutions of the Schrödinger equations are expressed via fundamental solutions of systems of linear equations arising in the isomonodromic deformations method, the compatibility condition of which is the second Painlevé equation. The constructed solutions of two nonstationary Schrödinger equations are globally smooth. Some of the smooth solutions in question of one of these two equations exponentially tend to zero as \n\n \n \n \n x\n 2\n \n +\n \n y\n 2\n \n →\n ∞\n \n x^2+y^2\\to \\infty\n \n\n if the corresponding solutions of linear systems that are used in the method of isomonodromic deformations are compatible on the so-called 1-tronquée solutions of the second Painlevé equation.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1739","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For the three nonstationary Schrödinger equations i ℏ Ψ τ = H ( x , y , − i ℏ ∂ ∂ x , − i ℏ ∂ ∂ y ) Ψ , \begin{equation*} i\hbar \Psi _{\tau }=H(x,y,-i\hbar \frac {\partial }{\partial x},-i\hbar \frac {\partial }{\partial y})\Psi , \end{equation*} solutions are constructed that correspond to conservative Hamiltonian systems with two degrees of freedom whose general solutions can be represented by those of the second Painlevé equation. These solutions of the Schrödinger equations are expressed via fundamental solutions of systems of linear equations arising in the isomonodromic deformations method, the compatibility condition of which is the second Painlevé equation. The constructed solutions of two nonstationary Schrödinger equations are globally smooth. Some of the smooth solutions in question of one of these two equations exponentially tend to zero as x 2 + y 2 → ∞ x^2+y^2\to \infty if the corresponding solutions of linear systems that are used in the method of isomonodromic deformations are compatible on the so-called 1-tronquée solutions of the second Painlevé equation.
二自由度保守哈密顿系统对二阶painlevlevw方程的等单调量化
对于三个非平稳Schrödinger方程ℏ Ψτ=H(x,y,−iℏ ∂ ∂ x,−iℏ ∂ ∂ y)Ψ,\ begin{equipment*}i\hbar\Psi _{\tau}=H(x,y,-i\hbar\frac{\partial x},-i\hpar\frac{\ppartial y})\ Psi,\ end{equation*}解被构造为对应于具有两个自由度的保守哈密顿系统,其一般解可以用第二个Painlevé方程的一般解表示。Schrödinger方程的这些解是通过等单调变形法中产生的线性方程组的基本解来表示的,其相容条件是第二个Painlevé方程。两个非平稳Schrödinger方程的构造解是全局光滑的。这两个方程中的一个方程的一些光滑解在x2+y2时呈指数趋向于零→ ∞ x^2+y^2如果在等单调变形方法中使用的线性系统的相应解在第二个Painlevé方程的所谓1-tronqée解上是相容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信