{"title":"Coaxiality and perpendicularity prediction of saddle surface rotor based on deep belief networks","authors":"Chuanzhi Sun, Yin Chu Wang, Qing Lu, Yongmeng Liu, Jiubin Tan","doi":"10.1108/aa-06-2022-0163","DOIUrl":null,"url":null,"abstract":"\nPurpose\nAiming at the problem that the transmission mechanism of the assembly error of the multi-stage rotor with saddle surface type is not clear, the purpose of this paper is to propose a deep belief network to realize the prediction of the coaxiality and perpendicularity of the multi-stage rotor.\n\n\nDesign/methodology/approach\nFirst, the surface type of the aero-engine rotor is classified. The rotor surface profile sampling data is converted into image structure data, and a rotor surface type classifier based on convolutional neural network is established. Then, for the saddle surface rotor, a prediction model of coaxiality and perpendicularity based on deep belief network is established. To verify the effectiveness of the coaxiality and perpendicularity prediction method proposed in this paper, a multi-stage rotor coaxiality and perpendicularity assembly measurement experiment is carried out.\n\n\nFindings\nThe results of this paper show that the accuracy rate of face type classification using convolutional neural network is 99%, which meets the requirements of subsequent assembly process. For the 80 sets of test samples, the average errors of the coaxiality and perpendicularity of the deep belief network prediction method are 0.1 and 1.6 µm, respectively.\n\n\nOriginality/value\nTherefore, the method proposed in this paper can be used not only for rotor surface classification but also to guide the assembly of aero-engine multi-stage rotors.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-06-2022-0163","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Aiming at the problem that the transmission mechanism of the assembly error of the multi-stage rotor with saddle surface type is not clear, the purpose of this paper is to propose a deep belief network to realize the prediction of the coaxiality and perpendicularity of the multi-stage rotor.
Design/methodology/approach
First, the surface type of the aero-engine rotor is classified. The rotor surface profile sampling data is converted into image structure data, and a rotor surface type classifier based on convolutional neural network is established. Then, for the saddle surface rotor, a prediction model of coaxiality and perpendicularity based on deep belief network is established. To verify the effectiveness of the coaxiality and perpendicularity prediction method proposed in this paper, a multi-stage rotor coaxiality and perpendicularity assembly measurement experiment is carried out.
Findings
The results of this paper show that the accuracy rate of face type classification using convolutional neural network is 99%, which meets the requirements of subsequent assembly process. For the 80 sets of test samples, the average errors of the coaxiality and perpendicularity of the deep belief network prediction method are 0.1 and 1.6 µm, respectively.
Originality/value
Therefore, the method proposed in this paper can be used not only for rotor surface classification but also to guide the assembly of aero-engine multi-stage rotors.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.