L. Ardaravičius, O. Kiprijanovič, M. Ramonas, E. Šermukšnis, A. Simukovic, A. Matulionis
{"title":"Estimation of the charged defect density from hot-electron transport studies in epitaxial ZnO","authors":"L. Ardaravičius, O. Kiprijanovič, M. Ramonas, E. Šermukšnis, A. Simukovic, A. Matulionis","doi":"10.3952/physics.v60i1.4163","DOIUrl":null,"url":null,"abstract":"High-field electron transport measurements by applying short (few ns) voltage pulses on nominally undoped n-type Zn-polar ZnO epilayers are reported and interpreted in terms of the Boltzmann kinetic equation. The transient measurements do not demonstrate a significant change in the electron density up to 320 kV/cm electric field. This result together with the experimental data on the current allows one to estimate the electron drift velocity from the measured current: the highest value of ~2.9 × 107 cm/s is obtained at the pre-breakdown field of 320 kV/cm for the ZnO layer with the electron density of 1.5 × 1017 cm–3. The densities of double-charged oxygen vacancies (~1.6 × 1017 cm–3) and other charged centres (~1.7 × 1017 cm–3) are assumed for the best fit of the simulated and measured hot-electron effect. A correlation with the epilayer growth conditions is demonstrated: the higher Zn cell temperature favours the formation of a higher density of the oxygen vacancies (1.9 × 1017 cm–3 at 347°C).","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/physics.v60i1.4163","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
High-field electron transport measurements by applying short (few ns) voltage pulses on nominally undoped n-type Zn-polar ZnO epilayers are reported and interpreted in terms of the Boltzmann kinetic equation. The transient measurements do not demonstrate a significant change in the electron density up to 320 kV/cm electric field. This result together with the experimental data on the current allows one to estimate the electron drift velocity from the measured current: the highest value of ~2.9 × 107 cm/s is obtained at the pre-breakdown field of 320 kV/cm for the ZnO layer with the electron density of 1.5 × 1017 cm–3. The densities of double-charged oxygen vacancies (~1.6 × 1017 cm–3) and other charged centres (~1.7 × 1017 cm–3) are assumed for the best fit of the simulated and measured hot-electron effect. A correlation with the epilayer growth conditions is demonstrated: the higher Zn cell temperature favours the formation of a higher density of the oxygen vacancies (1.9 × 1017 cm–3 at 347°C).
期刊介绍:
The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.