ANDROID MALWARE DETECTION USING MACHINE LEARNING AND REVERSE ENGINEERING

M. Kedziora, Paulina Gawin, Michał Szczepanik, I. Józwiak
{"title":"ANDROID MALWARE DETECTION USING MACHINE LEARNING AND REVERSE ENGINEERING","authors":"M. Kedziora, Paulina Gawin, Michał Szczepanik, I. Józwiak","doi":"10.5121/csit.2018.81709","DOIUrl":null,"url":null,"abstract":"This paper is focused on the issue of malware detection for Android mobile system by Reverse Engineering of java code. The characteristics of malicious software were identified based on a collected set of applications. Total number of 1958 applications where tested (including 996 malware apps). A unique set of features was chosen. Five classification algorithms (Random Forest, SVM, K-NN, Nave Bayes, Logistic Regression) and three attribute selection algorithms were examined in order to choose those that would provide the most effective malware detection.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2018.81709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is focused on the issue of malware detection for Android mobile system by Reverse Engineering of java code. The characteristics of malicious software were identified based on a collected set of applications. Total number of 1958 applications where tested (including 996 malware apps). A unique set of features was chosen. Five classification algorithms (Random Forest, SVM, K-NN, Nave Bayes, Logistic Regression) and three attribute selection algorithms were examined in order to choose those that would provide the most effective malware detection.
Android恶意软件检测使用机器学习和逆向工程
本文主要研究利用java代码的逆向工程技术对安卓移动系统进行恶意软件检测的问题。恶意软件的特征是根据收集的一组应用程序识别的。测试的1958个应用程序总数(包括996个恶意软件应用程序)。选择了一组独特的功能。为了选择最有效的恶意软件检测算法,研究了五种分类算法(随机森林、SVM、K-NN、Nave Bayes、Logistic回归)和三种属性选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信