{"title":"Non-unimodular transversely homogeneous foliations","authors":"E. Mac'ias-Virg'os, P. L. Mart'in-M'endez","doi":"10.5802/aif.3412","DOIUrl":null,"url":null,"abstract":"We give sufficient conditions for the tautness of a transversely homogenous foliation defined on a compact manifold, by computing its base-like cohomology. As an application, we prove that if the foliation is non-unimodular then either the ambient manifold, the closure of the leaves or the total space of an associated principal bundle fiber over $S^1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We give sufficient conditions for the tautness of a transversely homogenous foliation defined on a compact manifold, by computing its base-like cohomology. As an application, we prove that if the foliation is non-unimodular then either the ambient manifold, the closure of the leaves or the total space of an associated principal bundle fiber over $S^1$.