{"title":"Universal nonlinear disturbance observer for robotic manipulators","authors":"Feilong Zhang, Xin Zhang, Qingxin Li, Hualiang Zhang","doi":"10.1177/17298806231167669","DOIUrl":null,"url":null,"abstract":"Dynamic uncertainties and unknown disturbances will degrade the tracking performance of robots. When using a disturber observer-based controller, the key to effectively compensate for these uncertainties is to measure or estimate as accurately as possible any disturbance. To relax restrictions on the design of the current nonlinear disturbance observer for the robot, a universal nonlinear disturbance observer is proposed for higher estimation performance. The stability of the proposed universal nonlinear disturbance observer is theoretically analyzed and the boundaries of estimation error are proven according to the vector differential equation. Finally, the proposed universal nonlinear disturbance observer is evaluated via simulation by comparison to the nonlinear disturbance observer. The result shows a faster estimation speed and a higher estimation accuracy of the universal nonlinear disturbance observer.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231167669","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic uncertainties and unknown disturbances will degrade the tracking performance of robots. When using a disturber observer-based controller, the key to effectively compensate for these uncertainties is to measure or estimate as accurately as possible any disturbance. To relax restrictions on the design of the current nonlinear disturbance observer for the robot, a universal nonlinear disturbance observer is proposed for higher estimation performance. The stability of the proposed universal nonlinear disturbance observer is theoretically analyzed and the boundaries of estimation error are proven according to the vector differential equation. Finally, the proposed universal nonlinear disturbance observer is evaluated via simulation by comparison to the nonlinear disturbance observer. The result shows a faster estimation speed and a higher estimation accuracy of the universal nonlinear disturbance observer.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.