M. Vagheian, D. Sardari, S. Saramad, D. R. Ochbelagh
{"title":"Experimental and theoretical investigation into X-ray shielding properties of thin lead films","authors":"M. Vagheian, D. Sardari, S. Saramad, D. R. Ochbelagh","doi":"10.18869/ACADPUB.IJRR.18.2.263","DOIUrl":null,"url":null,"abstract":"Background: Among all of the radiations, X-ray has been always the center of attention due to the increasing availability of the X-ray tubes in industry, research institutes and medical centers. In this study, X-ray shielding properties of bulk and nanostructured thin lead films were investigated by means of Monte-Carlo computational and experimental methods, respectively. Materials and Methods: The lead samples were fabricated by the Physical Vapor Deposition technique (PVD) with different thickness of 10, 100 and 1000 nm. To investigate the radiation shielding properties of the nanostructured thin films, all of the prepared samples were subjected to the X-ray ranging from 8 to 14 keV. In order to consider the shielding properties of the bulk-structured thin films, the Monte-Carlo MCNPX code was employed. Results: The results indicated that, for low X-ray energies, the nanostructured thin lead films attenuate more than bulk-structured samples; however, the difference disappears as film thickness increases to 1000 nm or X-ray energy reaches 14 keV. Conclusion: Results imply that the nanostructured thin lead films attenuate more photons than the bulkstructured thin lead films with the same thicknesses.","PeriodicalId":14498,"journal":{"name":"Iranian Journal of Radiation Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Radiation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.IJRR.18.2.263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Among all of the radiations, X-ray has been always the center of attention due to the increasing availability of the X-ray tubes in industry, research institutes and medical centers. In this study, X-ray shielding properties of bulk and nanostructured thin lead films were investigated by means of Monte-Carlo computational and experimental methods, respectively. Materials and Methods: The lead samples were fabricated by the Physical Vapor Deposition technique (PVD) with different thickness of 10, 100 and 1000 nm. To investigate the radiation shielding properties of the nanostructured thin films, all of the prepared samples were subjected to the X-ray ranging from 8 to 14 keV. In order to consider the shielding properties of the bulk-structured thin films, the Monte-Carlo MCNPX code was employed. Results: The results indicated that, for low X-ray energies, the nanostructured thin lead films attenuate more than bulk-structured samples; however, the difference disappears as film thickness increases to 1000 nm or X-ray energy reaches 14 keV. Conclusion: Results imply that the nanostructured thin lead films attenuate more photons than the bulkstructured thin lead films with the same thicknesses.
期刊介绍:
Iranian Journal of Radiation Research (IJRR) publishes original scientific research and clinical investigations related to radiation oncology, radiation biology, and Medical and health physics. The clinical studies submitted for publication include experimental studies of combined modality treatment, especially chemoradiotherapy approaches, and relevant innovations in hyperthermia, brachytherapy, high LET irradiation, nuclear medicine, dosimetry, tumor imaging, radiation treatment planning, radiosensitizers, and radioprotectors. All manuscripts must pass stringent peer-review and only papers that are rated of high scientific quality are accepted.