{"title":"A new extreme value copula and new families of univariate distributions based on Freund’s exponential model","authors":"S. Guzmics, G. Pflug","doi":"10.1515/demo-2020-0018","DOIUrl":null,"url":null,"abstract":"Abstract The use of the exponential distribution and its multivariate generalizations is extremely popular in lifetime modeling. Freund’s bivariate exponential model (1961) is based on the idea that the remaining lifetime of any entity in a bivariate system is shortened when the other entity defaults. Such a model can be quite useful for studying systemic risk, for instance in financial systems. Guzmics and Pflug (2019) revisited Freund’s model, deriving the corresponding bivariate copula and examined some characteristics of it; furthermore, we opened the door for a multivariate setting. Now we present further investigations in the bivariate model: we compute the tail dependence coefficients, we examine the marginal and joint distributions of the componentwise maxima, which leads to an extreme value copula, which – to the best of our knowledge – has not been investigated in the literature yet. The original bivariate model of Freund has been extended to more variables by several authors. We also turn to the multivariate setting, and our focus is different from that of the previous generalizations, and therefore it is novel: examining the distribution of the sum and of the average of the lifetime variables (provided that the shock parameters are all the same) leads to new families of univariate distributions, which we call Exponential Gamma Mixture Type I and Type II (EGM) distributions. We present their basic properties, we provide asymptotics for them, and finally we also provide the limiting distribution for the EGM Type II distribution.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"8 1","pages":"330 - 360"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2020-0018","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2020-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The use of the exponential distribution and its multivariate generalizations is extremely popular in lifetime modeling. Freund’s bivariate exponential model (1961) is based on the idea that the remaining lifetime of any entity in a bivariate system is shortened when the other entity defaults. Such a model can be quite useful for studying systemic risk, for instance in financial systems. Guzmics and Pflug (2019) revisited Freund’s model, deriving the corresponding bivariate copula and examined some characteristics of it; furthermore, we opened the door for a multivariate setting. Now we present further investigations in the bivariate model: we compute the tail dependence coefficients, we examine the marginal and joint distributions of the componentwise maxima, which leads to an extreme value copula, which – to the best of our knowledge – has not been investigated in the literature yet. The original bivariate model of Freund has been extended to more variables by several authors. We also turn to the multivariate setting, and our focus is different from that of the previous generalizations, and therefore it is novel: examining the distribution of the sum and of the average of the lifetime variables (provided that the shock parameters are all the same) leads to new families of univariate distributions, which we call Exponential Gamma Mixture Type I and Type II (EGM) distributions. We present their basic properties, we provide asymptotics for them, and finally we also provide the limiting distribution for the EGM Type II distribution.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations