A Hybrid CNN for Image Denoising

Menghua Zheng, Keyan Zhi, Jiawen Zeng, Chunwei Tian, Lei You
{"title":"A Hybrid CNN for Image Denoising","authors":"Menghua Zheng, Keyan Zhi, Jiawen Zeng, Chunwei Tian, Lei You","doi":"10.37965/jait.2022.0101","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks (CNNs) with strong learning abilities have been used in the field of image super-resolution. However, some CNNs depends on a single deep network to training an image super-resolution model, which will have poor performance in complex screens. To address this problem, we propose a hybrid denoising CNN (HDCNN). HDCNN is composed of a dilated block (DB), RepVGG block (RVB) and feature refinement block (FB), a single convolution. DB combines a dilated convolution, batch normalization (BN), common convolutions, activation function of ReLU to obtain more context information. RVB uses parallel combination of convolution and BN, ReLU to extract complementary width features. FB is used to obtain more accurate information via refining obtained feature from the RVB. A single convolution collaborates a residual learning operation to construct a clean image. These key components make the HDCNN have good performance in image denoising. Experiment shows that the proposed HDCNN enjoys good denoising effect in public datasets.  ","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2022.0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Deep convolutional neural networks (CNNs) with strong learning abilities have been used in the field of image super-resolution. However, some CNNs depends on a single deep network to training an image super-resolution model, which will have poor performance in complex screens. To address this problem, we propose a hybrid denoising CNN (HDCNN). HDCNN is composed of a dilated block (DB), RepVGG block (RVB) and feature refinement block (FB), a single convolution. DB combines a dilated convolution, batch normalization (BN), common convolutions, activation function of ReLU to obtain more context information. RVB uses parallel combination of convolution and BN, ReLU to extract complementary width features. FB is used to obtain more accurate information via refining obtained feature from the RVB. A single convolution collaborates a residual learning operation to construct a clean image. These key components make the HDCNN have good performance in image denoising. Experiment shows that the proposed HDCNN enjoys good denoising effect in public datasets.  
一种用于图像去噪的混合CNN
深度卷积神经网络具有较强的学习能力,已被应用于图像超分辨率领域。然而,一些细胞神经网络依赖于单个深度网络来训练图像超分辨率模型,这在复杂屏幕中的性能较差。为了解决这个问题,我们提出了一种混合去噪CNN(HDCNN)。HDCNN由扩张块(DB)、RepVGG块(RVB)和特征细化块(FB)组成,单个卷积。DB结合了扩展卷积、批量归一化(BN)、公共卷积、ReLU的激活函数来获得更多的上下文信息。RVB使用卷积和BN、ReLU的并行组合来提取互补宽度特征。FB用于通过细化从RVB获得的特征来获得更准确的信息。单个卷积协同残差学习操作来构建干净的图像。这些关键部件使得HDCNN在图像去噪方面具有良好的性能。实验表明,所提出的HDCNN在公共数据集中具有良好的去噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信