Weighted p-regular kernels for reproducing kernel Hilbert spaces and Mercer Theorem

IF 2 2区 数学 Q1 MATHEMATICS
L. Agud, J. Calabuig, E. Pérez
{"title":"Weighted p-regular kernels for reproducing kernel Hilbert spaces and Mercer Theorem","authors":"L. Agud, J. Calabuig, E. Pérez","doi":"10.1142/s0219530519500179","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite measure space and consider a Banach function space [Formula: see text]. Motivated by some previous papers and current applications, we provide a general framework for representing reproducing kernel Hilbert spaces as subsets of Köthe–Bochner (vector-valued) function spaces. We analyze operator-valued kernels [Formula: see text] that define integration maps [Formula: see text] between Köthe–Bochner spaces of Hilbert-valued functions [Formula: see text] We show a reduction procedure which allows to find a factorization of the corresponding kernel operator through weighted Bochner spaces [Formula: see text] and [Formula: see text] — where [Formula: see text] — under the assumption of [Formula: see text]-concavity of [Formula: see text] Equivalently, a new kernel obtained by multiplying [Formula: see text] by scalar functions can be given in such a way that the kernel operator is defined from [Formula: see text] to [Formula: see text] in a natural way. As an application, we prove a new version of Mercer Theorem for matrix-valued weighted kernels.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219530519500179","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530519500179","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let [Formula: see text] be a finite measure space and consider a Banach function space [Formula: see text]. Motivated by some previous papers and current applications, we provide a general framework for representing reproducing kernel Hilbert spaces as subsets of Köthe–Bochner (vector-valued) function spaces. We analyze operator-valued kernels [Formula: see text] that define integration maps [Formula: see text] between Köthe–Bochner spaces of Hilbert-valued functions [Formula: see text] We show a reduction procedure which allows to find a factorization of the corresponding kernel operator through weighted Bochner spaces [Formula: see text] and [Formula: see text] — where [Formula: see text] — under the assumption of [Formula: see text]-concavity of [Formula: see text] Equivalently, a new kernel obtained by multiplying [Formula: see text] by scalar functions can be given in such a way that the kernel operator is defined from [Formula: see text] to [Formula: see text] in a natural way. As an application, we prove a new version of Mercer Theorem for matrix-valued weighted kernels.
重制核Hilbert空间的加权p正则核及Mercer定理
设[公式:见文]是一个有限测度空间,并考虑一个Banach函数空间[公式:见文]。受一些以前的论文和当前应用的启发,我们提供了一个通用框架,将核希尔伯特空间表示为Köthe-Bochner(向量值)函数空间的子集。我们分析了定义hilbert值函数的Köthe-Bochner空间之间的积分映射的算子值核[公式:见文]。我们展示了一个约简过程,它允许通过加权Bochner空间[公式:见文]和[公式:见文]找到相应核算子的因式分解,其中[公式:见文]在[公式:见文]的假设下,[公式:见文]的凹凸性。同样,将[Formula: see text]与标量函数相乘得到的新核可以用这样的方式给出,即核算子从[Formula: see text]自然地定义为[Formula: see text]。作为应用,我们证明了矩阵值加权核的Mercer定理的一个新版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信