A Novel Deep Learning-based Sentiment Analysis Method Enhanced with Emojis in Microblog Social Networks

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xianyong Li, Jiabo Zhang, Yajun Du, Jian Zhu, Yongquan Fan, Xiaoliang Chen
{"title":"A Novel Deep Learning-based Sentiment Analysis Method Enhanced with Emojis in Microblog Social Networks","authors":"Xianyong Li, Jiabo Zhang, Yajun Du, Jian Zhu, Yongquan Fan, Xiaoliang Chen","doi":"10.1080/17517575.2022.2037160","DOIUrl":null,"url":null,"abstract":"ABSTRACT To exactly classify sentiments of microblog reviews with emojis in microblog social networks, this paper first proposes an emoji vectorisation method to achieve emoji vectors. Then, an emoji-text integrated bidirectional LSTM (ET-BiLSTM) model for sentiment analysis is proposed. In this model, review text-based sentence representations are extracted by a bidirectional LSTM network. Emoji-based auxiliary representations are obtained by a new attention mechanism. The two representations are further integrated into final review representation vectors. Finally, experimental results indicate that the proposed ET-BiLSTM model improves the performance of sentiment classification evaluated by macro-P, macro-R and macro-F1 scores in microblog social networks.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2022.2037160","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 12

Abstract

ABSTRACT To exactly classify sentiments of microblog reviews with emojis in microblog social networks, this paper first proposes an emoji vectorisation method to achieve emoji vectors. Then, an emoji-text integrated bidirectional LSTM (ET-BiLSTM) model for sentiment analysis is proposed. In this model, review text-based sentence representations are extracted by a bidirectional LSTM network. Emoji-based auxiliary representations are obtained by a new attention mechanism. The two representations are further integrated into final review representation vectors. Finally, experimental results indicate that the proposed ET-BiLSTM model improves the performance of sentiment classification evaluated by macro-P, macro-R and macro-F1 scores in microblog social networks.
一种基于深度学习的微博社交网络情绪分析方法
摘要为了准确地对微博社交网络中带有表情符号的微博评论情感进行分类,本文首先提出了一种表情符号向量化方法来实现表情符号向量。然后,提出了一种用于情绪分析的表情-文本集成双向LSTM(ET-BiLSTM)模型。在该模型中,通过双向LSTM网络提取基于评论文本的句子表示。基于表情的辅助表征是通过一种新的注意机制获得的。这两个表示被进一步集成到最终审查表示向量中。最后,实验结果表明,所提出的ET-BiLSTM模型提高了微博社交网络中用macro-P、macro-R和macro-F1评分进行情感分类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信