{"title":"A Novel Deep Learning-based Sentiment Analysis Method Enhanced with Emojis in Microblog Social Networks","authors":"Xianyong Li, Jiabo Zhang, Yajun Du, Jian Zhu, Yongquan Fan, Xiaoliang Chen","doi":"10.1080/17517575.2022.2037160","DOIUrl":null,"url":null,"abstract":"ABSTRACT To exactly classify sentiments of microblog reviews with emojis in microblog social networks, this paper first proposes an emoji vectorisation method to achieve emoji vectors. Then, an emoji-text integrated bidirectional LSTM (ET-BiLSTM) model for sentiment analysis is proposed. In this model, review text-based sentence representations are extracted by a bidirectional LSTM network. Emoji-based auxiliary representations are obtained by a new attention mechanism. The two representations are further integrated into final review representation vectors. Finally, experimental results indicate that the proposed ET-BiLSTM model improves the performance of sentiment classification evaluated by macro-P, macro-R and macro-F1 scores in microblog social networks.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2022.2037160","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 12
Abstract
ABSTRACT To exactly classify sentiments of microblog reviews with emojis in microblog social networks, this paper first proposes an emoji vectorisation method to achieve emoji vectors. Then, an emoji-text integrated bidirectional LSTM (ET-BiLSTM) model for sentiment analysis is proposed. In this model, review text-based sentence representations are extracted by a bidirectional LSTM network. Emoji-based auxiliary representations are obtained by a new attention mechanism. The two representations are further integrated into final review representation vectors. Finally, experimental results indicate that the proposed ET-BiLSTM model improves the performance of sentiment classification evaluated by macro-P, macro-R and macro-F1 scores in microblog social networks.
期刊介绍:
Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.