Compound Archimedean Copulas

Moshe Kelner, Z. Landsman, U. Makov
{"title":"Compound Archimedean Copulas","authors":"Moshe Kelner, Z. Landsman, U. Makov","doi":"10.5539/IJSP.V10N3P126","DOIUrl":null,"url":null,"abstract":"The copula function is an effective and elegant tool useful for modeling dependence between random variables. Among the many families of this function, one of the most prominent family of copula is the Archimedean family, which has its unique structure and features. Most of the copula functions in this family have only a single dependence parameter which limits the scope of the dependence structure. In this paper we modify the generator of Archimedean copulas in a way which maintains membership in the family while increasing the number of dependence parameters and, consequently, creating new copulas having more flexible dependence structure.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":"10 1","pages":"126"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/IJSP.V10N3P126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The copula function is an effective and elegant tool useful for modeling dependence between random variables. Among the many families of this function, one of the most prominent family of copula is the Archimedean family, which has its unique structure and features. Most of the copula functions in this family have only a single dependence parameter which limits the scope of the dependence structure. In this paper we modify the generator of Archimedean copulas in a way which maintains membership in the family while increasing the number of dependence parameters and, consequently, creating new copulas having more flexible dependence structure.
复方阿基米德copula
耦合函数是一种有效的、优雅的工具,可用于对随机变量之间的相关性进行建模。在该函数的众多科中,最突出的科之一是阿基米德科,它有其独特的结构和特征。该族中的大多数联结函数只有一个依赖参数,这限制了依赖结构的范围。本文对阿基米德连系的产生器进行了改进,使其在保持族成员的同时增加了依赖参数的数量,从而产生了具有更灵活的依赖结构的新连系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信