Prime extension dimension of a module

Q4 Mathematics
T. Duraivel, S. Mangayarcarassy, K. Premkumar
{"title":"Prime extension dimension of a module","authors":"T. Duraivel, S. Mangayarcarassy, K. Premkumar","doi":"10.22124/JART.2018.11232.1116","DOIUrl":null,"url":null,"abstract":"We have that for a finitely generated module $M$ over a Noetherian ring $A$ any two RPE filtrations of $M$ have same length. We call this length as prime extension dimension of $M$ and denote it as $mr{pe.d}_A(M)$. This dimension measures how far a module is from torsion freeness. We show for every submodule (N) of (M), (mr{pe.d}_A(N)leqmr{pe.d}_A(M)) and (mr{pe.d}_A(N)+mr{pe.d}_A(M/N)geqmr{pe.d}_A(M)). We compute the prime extension dimension of a module using the prime extension dimensions of its primary submodules which occurs in a minimal primary decomposition of (0) in (M).","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"6 1","pages":"97-106"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2018.11232.1116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

We have that for a finitely generated module $M$ over a Noetherian ring $A$ any two RPE filtrations of $M$ have same length. We call this length as prime extension dimension of $M$ and denote it as $mr{pe.d}_A(M)$. This dimension measures how far a module is from torsion freeness. We show for every submodule (N) of (M), (mr{pe.d}_A(N)leqmr{pe.d}_A(M)) and (mr{pe.d}_A(N)+mr{pe.d}_A(M/N)geqmr{pe.d}_A(M)). We compute the prime extension dimension of a module using the prime extension dimensions of its primary submodules which occurs in a minimal primary decomposition of (0) in (M).
一个模块的素数扩展尺寸
我们得到了在noether环上的有限生成模$M$的任意两个RPE过滤$M$具有相同的长度。我们称这个长度为$M$的素数扩展维数,并表示为$mr{pe.d}_A(M)$。这个维度测量一个模块离无扭转的距离有多远。我们展示了每个子模块(N) (M), ({pe.d} _A先生(N) leqmr {pe.d} _A (M))和({pe.d} _A先生(N) + {pe.d} _A先生(M / N) geqmr {pe.d} _A (M))。我们利用(M)中(0)的最小初等分解中出现的主子模块的素数扩展维数来计算一个模块的素数扩展维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信