High-dimensional variable selection accounting for heterogeneity in regression coefficients across multiple data sources

Pub Date : 2023-08-19 DOI:10.1002/cjs.11793
Tingting Yu, Shangyuan Ye, Rui Wang
{"title":"High-dimensional variable selection accounting for heterogeneity in regression coefficients across multiple data sources","authors":"Tingting Yu,&nbsp;Shangyuan Ye,&nbsp;Rui Wang","doi":"10.1002/cjs.11793","DOIUrl":null,"url":null,"abstract":"<p>When analyzing data combined from multiple sources (e.g., hospitals, studies), the heterogeneity across different sources must be accounted for. In this article, we consider high-dimensional linear regression models for integrative data analysis. We propose a new adaptive clustering penalty (ACP) method to simultaneously select variables and cluster source-specific regression coefficients with subhomogeneity. We show that the estimator based on the ACP method enjoys a strong oracle property under certain regularity conditions. We also develop an efficient algorithm based on the alternating direction method of multipliers (ADMM) for parameter estimation. We conduct simulation studies to compare the performance of the proposed method to three existing methods (a fused LASSO with adjacent fusion, a pairwise fused LASSO and a multidirectional shrinkage penalty method). Finally, we apply the proposed method to the multicentre Childhood Adenotonsillectomy Trial to identify subhomogeneity in the treatment effects across different study sites.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When analyzing data combined from multiple sources (e.g., hospitals, studies), the heterogeneity across different sources must be accounted for. In this article, we consider high-dimensional linear regression models for integrative data analysis. We propose a new adaptive clustering penalty (ACP) method to simultaneously select variables and cluster source-specific regression coefficients with subhomogeneity. We show that the estimator based on the ACP method enjoys a strong oracle property under certain regularity conditions. We also develop an efficient algorithm based on the alternating direction method of multipliers (ADMM) for parameter estimation. We conduct simulation studies to compare the performance of the proposed method to three existing methods (a fused LASSO with adjacent fusion, a pairwise fused LASSO and a multidirectional shrinkage penalty method). Finally, we apply the proposed method to the multicentre Childhood Adenotonsillectomy Trial to identify subhomogeneity in the treatment effects across different study sites.

分享
查看原文
考虑多元数据源回归系数异质性的高维变量选择
在分析来自多个来源(如医院、研究)的综合数据时,必须考虑到不同来源之间的异质性。在本文中,我们考虑采用高维线性回归模型进行综合数据分析。我们提出了一种新的自适应聚类惩罚(ACP)方法来同时选择变量和具有亚同质性的特定聚类源的回归系数。我们证明了在一定的正则性条件下,基于ACP方法的估计量具有很强的预言性。我们还开发了一种基于乘法器交替方向法(ADMM)的高效参数估计算法。我们进行了仿真研究,将所提出的方法与三种现有方法(融合LASSO与相邻融合、两两融合LASSO和多向收缩惩罚方法)的性能进行了比较。最后,我们将提出的方法应用于多中心儿童腺扁桃体切除术试验,以确定不同研究地点治疗效果的亚均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信