{"title":"New analytical methods for solving a class of conformable fractional differential equations by fractional Laplace transform","authors":"M. Molaei, F. D. Saei, M. Javidi, Y. Mahmoudi","doi":"10.22034/CMDE.2021.40834.1775","DOIUrl":null,"url":null,"abstract":"In this paper, new analytical solutions for a class of conformable fractional differential equations (CFDE) and some more results about Laplace transform introduced by Abdeljawad cite{abdeljawad2015conformable} are investigated. The Laplace transform method is developed to get the exact solution of conformable fractional differential equations. The aim of this paper is to convert the conformable fractional differential equations into ordinary differential equations (ODE), this is done by using the fractional Laplace transformation of $(alpha+beta)$ order.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.40834.1775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, new analytical solutions for a class of conformable fractional differential equations (CFDE) and some more results about Laplace transform introduced by Abdeljawad cite{abdeljawad2015conformable} are investigated. The Laplace transform method is developed to get the exact solution of conformable fractional differential equations. The aim of this paper is to convert the conformable fractional differential equations into ordinary differential equations (ODE), this is done by using the fractional Laplace transformation of $(alpha+beta)$ order.