Local constancy for reductions of two-dimensional crystalline representations

IF 0.3 4区 数学 Q4 MATHEMATICS
Emiliano Torti
{"title":"Local constancy for reductions of two-dimensional crystalline representations","authors":"Emiliano Torti","doi":"10.5802/jtnb.1205","DOIUrl":null,"url":null,"abstract":"We prove the existence of local constancy phenomena for reductions in a general prime power setting of two-dimensional irreducible crystalline representations. Up to twist, these representations depend on two parameters: a trace $a_p$ and a weight $k$. We find an (explicit) local constancy result with respect to $a_p$ using Fontaine's theory of $(\\varphi, \\Gamma)$-modules and its crystalline refinement due to Berger via Wach modules and their continuity properties. The local constancy result with respect to $k$ (for $a_p\\not=0$) will follow from a local study of Colmez's rigid analytic space parametrizing trianguline representations. This work extends some results of Berger obtained in the semi-simple residual case.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1205","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the existence of local constancy phenomena for reductions in a general prime power setting of two-dimensional irreducible crystalline representations. Up to twist, these representations depend on two parameters: a trace $a_p$ and a weight $k$. We find an (explicit) local constancy result with respect to $a_p$ using Fontaine's theory of $(\varphi, \Gamma)$-modules and its crystalline refinement due to Berger via Wach modules and their continuity properties. The local constancy result with respect to $k$ (for $a_p\not=0$) will follow from a local study of Colmez's rigid analytic space parametrizing trianguline representations. This work extends some results of Berger obtained in the semi-simple residual case.
二维晶体表示归约的局部恒定性
我们证明了在二维不可约晶体表示的一般素数幂集中,约化的局部恒定现象的存在。直到扭曲,这些表示取决于两个参数:轨迹$a_p$和权重$k$。使用Fontaine的$(\varphi,\Gamma)$-模理论及其由Berger via Wach模及其连续性性质引起的结晶精化,我们发现了关于$a_p$的(显式)局部恒定性结果。关于$k$(对于$a_p\not=0$)的局部恒定性结果将来自对Colmez刚性分析空间参数化三角线表示的局部研究。这项工作推广了Berger在半简单残差情况下得到的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信